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consisting of four chapters. Finally there is a sequence of

An Explanation

These notes consist of three parts. First there is a

brief essay, WHAT IS A TEACHER. Then comes NUMBER SYSTEMC,

—— -y

notes on lectures given in the Spring Quarter, 1968.

-The lecture notes begin with page 4 of Lecture 1ll. The
four chapters of NUMBER SYSTEMS are essentially an elaboration
and reworking of the material which was contained in the first ,
11 lectures of é?e Spring, 1968 course. The notes ware taken
at my 1968 lectures by Arthur Kessner, a graduate student, and
during the summer of 1968, he collaborated with me in the
writing of Chapters 1-4% of NUMBER SYSTEMS. This work was sup-
ported by Educational Development Center. |

The subject matter of the course is concentrafed about
three number systems: whole numbers, integers, and rational g
numbers. Ideas of logic and set theory are brought into the
discussion incidently as needed for developing the number

systems, and are not emphasized for their own sake.

The material in Chapters 1-4 of NUMBER SYSTEMS 1s organ-
ized in an unusual way. Each chapter is divided into sections,
and each section is identified as belonging to one of three
"tpacks" which are interwoven throughout NUMBER SYSTEMS.

Track A presents basic mathematical ideas. Track B consists

principally of ideas for work by Mathematies 15 students, by
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means of which they can gain mastery of the conceptual mat-

erial of Track A. Some of the work is in the form of exercises.

Topics are suggested for possible discussion in the section
meetings of the course. Occasionally a possible long-term

project is suggested. Finally, in Track C we present sume

-- ideas to indicate how the conceptual material of Track A might
be brought by a teacher into the elementary school classroom.
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WHAT IS A TEACHER?®

Leon Henkin

Of course a teacher 1s someone who teaches -- not just occasionally,
but someone who works at teaching. And teaching is helping to learn.
But what 1is learning?

Most pcople will agree that learning 1s an activity you have to ac-
complish by yourself. It is like eating. Someonc can tell you where
_food is, or can set it before you -- they can cven put it in your '
mouth if you're a baby, say, or crippled. But the final act of eating

you must perform yourself. And so with learning.

.. So helping someone to learn -- that 1is, teaching -- 1s a little like
helping someone to eat. At the beginning a mother selects the food,
buys it and brings it home, prepares it, puts it in the baby's mouth,
wipes 1t off his chin, and puts it back in his mouth again. But her
object 1s to get her child to eat independently. Ultimately he should
be able to choose his own food to satisfy the requirements of both
health and taste; he should be able to obtain, prepare, and eat his
food himself.

And so, again, with learning. Unless a %eacher helps her pupils to
become independent of her, unless she conscitusly heads toward the day
when they can do well by themselves, at choosi.g what to learn, at

_acquiring the necessary materials, and finally at learning, she will

not succeed in the ultimate sense -- ¢ven if her pupils have gathered
- much information while they are with her.

If we take this viewpolnt seriously, it has far-reaching implica-
tions for the organization of our schools. It does not mean that the
teacher just gives hcavy homework assingments. Rather, it means that °
assignments arc designed to 1lcéd to genuinely independent thought, and
that the activities in the school itself are directed toward encoura-
ging students to pursue individual interests, to make discoveries, to
acquire a taste for study, to develop an ability to gather information,
and to understand.

What gives to teaching its greatest challenge, and what makes its
problems so vastly more complex than those involved in nelping a chilad

- to eat, 1s the tremendous variation in the learning process from one

individual to another. The scientific study of learning is barely
beginning, but it is rccognized gencrally that there is a variety of
basic patterns of learning, and that superimposed upon these patterns
are the individual ability levels distributed over what are probably
thousands of separatc characteristics which eater into the learning
apparatus of a given personality. Over and above the differcnces in
Predisposition and capacity to learn, the learning process, we knowi,

-* Reprinted from GOALS FOR MATHEMATICAL EDUCATICN OF ELEMENTARY SCHOOL
TEACHERS, A Report of the Cambridge Conference on Teacher Training,
"&ﬁ;hton Mifflin Co., Boston, 1967.
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2.

i1s highly sensitive to the total experience of an individual -- his
relations within the family and with friends, his contact with mass
communication media, his reading, his dreams, his play. Our demo-
2ratic aim of educating each person to the point where he can realize
his fullest potential places upon the teacher a great responsibility;
she should study and understand each one of her pupils as a distinctive
individual, and devise ways of hzlping hem to learn what 1s peculiarly
suited to his needs, his interest, and his ability.

Side by side with the cnontinuing effort to analyze her students and
tc understand them sympathetically, a teacher has the obligation to
work continuously at the selection of the facts, techniques, ideas,
and attitudes which she willl ask her students to learn, and at the
development of the methods and dericesy/ she will employ to help them
accomplish this iearning. In this respect we must understand clearly
that the nature of our society and the ro.e of the individual in it
are undergoing certain revolutionary changes and are disrupting pat-
teras which have been constant heretofore for generations, if not fcr
centuries; and we must clearly see that these changes impose upon the
teacher a concomitant pattern of new duties. Nowhere is this clearer
rerhaps tkh~n in the area of mathematical instruction -- although in
reality vur developing ideas about physical and biological science,
about the saudy of language (foreign and domestic), and the study of
society, and our developing attitudes concerning intergroup relations,
impose deiriands on the teacher which are Jjust as heavy though perhaps
iess ciearly articulated.

What are the changec in mathematics itself which must be reflected
in the glementarv classroom? For one thing, the sheer volume of new
mathematical reseaich has increased year by year at a sharply acceler-
ating rate, and a significant fraction of this work affects our under-
standinzg of the most fundamental concepts. In direction, mathematics
has become r'ich more abstract and, paradcxically, because of this ab-
straction it has become applilicable to, and has derived sustenance from,
a much wider ranse of applications. From the study of numbers and geo-
metric figures it Las broadened its scope to include every domain
where form and structure can be discerned. Finally, the art of com-
putation has become infinitely morz complex, and the practice of it has
shifted the routine burdenrs of execution to electromechanical devices
hile demanding muchi more i» the way of control and design from the
practitioner.

All these developments require not only that the teacher must alter
at this time tne mathematical curriculum which has heretofpore remained
static but also that she must continue to alter it from year to year
throughout her teaching career. They mean; tso, that the teacher of
elementary matrhematics must work not merely at training students to
follow and apply vrescribed ccmputational routines, but also at getting
them to understand abstaact concepts to the point where they can devise
and test new computational routines; she must stimulate them to for-
mulate new concepts arising from diverse realms of experience and to
search for the properties which relate these to concepts; and she must
educate them to employ relatively sophisticated patterns of mathematical

‘;anguage so that they can communicate freely about their w-srk.

These multifold obligations which we are delineating for the ele-
mentary school teacher entail two principal positions about the indi-
viduals to whom we assign this work. 1In the first place, the amount
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of speclalized knowledge, ability, and interest required to carry out
these tasks in even a competent, not to say inspiring, manner, obviously
transcends what can be expected of a single individual. We must begin
t2 think of the elementary teaching corps as composed of a variety of
persons contributing in diverse ways to a common goal. And, in the
Second place, we must recognize that the satisfactory discharge of her
duties requires of a teacher many kinds of professional activity

other than direct contact with students, and we must provide such
worklng conditions and environment as will faclilitate the prosecution
of these activities. Let usg examine these two propositions separately.

The 1dea of specialization among elementary teachers at first sug-
gests the kind of instructional pattern nnw found at the high school
levels. Most educators consider this pattern unsatisfactory at the. —

-—elementary levels. Actually, however, the concept of specialized teaching
1s compatible with a host of instructional patterns quite different in
character. For eéxample, insofar as we require each chiid to be the
subject of careful and sympathetic observation designed te discover
-optimum methods for developing his individual potential, it seems clear
that each child shoulc¢ be associated with a single teacher, say "A",
who can work with and study him in a variety of learning conditions
-and subject areas. At the same time, since "A" cannot be expezted to
be expert in all the everchanging curricular areas, we might wish a
Second teacher, "B", to divide her time among a larger group of children,
Seelng each child for only a short part of the day for the purpose of
dealing specifically with a single subject area, such as mathematics.

And of course we weuld expect "A" and "B" te work together, with
respect to their common students, by intercommunication and Joint pro-
Jects. There thus emerges an instructional pattern very different _
from what we find in high scheols and colleges, one in which a given
upll encounters more than one teacher simultaneously at certain parts
of the day.

One implication of such a program 1s the prospect of a teaching force
sharply increased in size. Such an increase may, in fact, prove neces-
sary or desireable, but it is by no means required by a scheme of co-
operative teaching. Of course, if our view of the teaching envirenment
is restricted to the conventional, closed classroam containing thirty
seats facing the front of the room, then simple arithmetic will show
indeed that to have more than one teacher in a room at one time requires
an increase in the total number of teachers. Ane the other hand, re-
verting to our early desideratum of independent, individual learning,
we can lmagine a school in which single students, or small groups,
work by themselves for significant periods of time in semiprivate areas
wilthin open rooms of considerable size with several teachers, including
"A" and "B", circulating and providing helr and observation in a
variety of ways. Such a program might well be feasible with no increas-
in total size of instructional staff. :

It should be emphasized that there is wide latitude faer experimen-
tation in the cooperative teaching patterns which may be evolved to
accomodate specialized teaching in the elementary school. The acti-
vitles undertaken by elementary school teachers who have specialized
in a subject area such as mathematics can range from dealing with
ndividual students to conductirg in-service courses for other teachers,
to monitoring new text materials and innovations in technolegical tea-
ching devices, to name but three examples; and we can envision groups
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(;) What sort of school environment can we imagine within which we could
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“in methodology, and a regular system of sabbatical leaves will be avail-

j Eﬁﬁf their work.
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Tvi-teachers-each of whose activities are concentrated among a different”

.few of the variazd forms of specialization.

But let us look now at our second proposition: that an inventory of
the new responsibillities belng assigned to elementary school teachers
requires us to provide adequate time and a sultable environment for a
iarge variety of activities which do not involve direct contact with
pupils. What does this mean in detzil?

At present the normal distribution of an elementary school teacher's
time involves seven hours a day at school: five are spent in direct
Supervision of students in class gor for brief periods on the playground),
oneé is designated as a lunch hour(which often involves further contact

~-With students in the cafeteria or even classroom), and one is spent

in prepazring the classroom before and after the students are in session
and in a multitude of clerical tasks such as completing pupil atten-
dance forms. Additional time in schonl 4s required on occasicn to at-
tend staff meetings, in-service tralning sessions, parent conr'erences,
or PTA meetings. And work at home is expected vo cover grading of
student papers, preparation of lessons and inspection of text books.
Essentially no time is provided fcr teachers to discuss problems in-
volving curriculum or methodology, no time, space, or materials are
provided for individual study, and the desirability of visits by teachers
to pupils' homes is ignored. It 1s fairly evident that the m-st dedi-
cated and efficient of teachers can barely be expected to discharge
even the most traditicnal instructional duties in a satisfactory manner
within such painful circumstances. To expect her to measure up, under
such conditions, to the kind of Job we have outlined is absurd.

realistically expect a teacher to perform the tasks we have listed?
Perhaps an average of three hours per day of contact with the pupils is
& reasonakle goal at which to aim. Subprofessional teacher's aidses

mist be engaged to provide clerical assistance and to free the teacher
Srsm routine chores so that she can concentrate on her primary work.
Help with homework and Playground supervision is desireable, though the
teacher will wish to maintain some contact with these student activities.
Space and facilities ror individual study. or for conferences among small
groups cf teachers, must be available; the most basic library items, such
as current journals in education and subject areas, should be on hand

in a suitable room of the school; and time for access to more sub-
stantlal library centers in the school district should be considered

a normal part of the workday. B-th subject specialists and general
teachers wiil wish to study their individual students 1in depth, and

each schrol indubitably will have ably manned facilities for psycho-
logical testing and research. Those aspects of instruction which can

be made routine, such as drill in the application of algorithms, will

be assigned to computer-based machines, so that the iime of teachers

may be conserved for the truly creative aspects of instruction. Films
and projection rooms, as well as properly equipped laboratéries for
sclence, language stvdy, and mathematics, will be among the teacher's
tools. Administrative assistance and computerized aids will facilitate
the testing and regrouping -f students where instruection is ocrganized

in ungraded patterns. The teacher will be expccted and er.couraged

Vto continue her studiés: in the material of her subject arza as well as

for those teachers wishing to deepen their penetratien of some aspect
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. It will not have escaped the reader's attention that the creation

of such a stimulating environment for teaching and learning is likely
to involve considerable increase In the cost of education. To some
extent the economic cost may be lightened because the assignment of
routine instructienal tasks to computer-based machines and the wide-
Spread and persistent encouragement of individualizegd self-study will
tend to lower the teacher-pupil ratio. In this connectlon we may expect
to see increasing use of students themselves as instrmictional aldes,

for learning-by-teaching is a phenomenon long familiar to teachers
~~but not adequatz=ly exploited as a Systematic method of instruction.

Any savings effected by reducing the teacher-student ratio will be
more than offset, however, by the increased salariles which will have
to be provided to assure an adequate supply of sufficiently talented
individuals. The present miserable salary scales Prevailing in most
school districts take lmproper advantage of the fact that the great
bulk of elementary teachers do not need to support a family with their
income from teaching. But for the teaching profession of the future
we shall have to attract many men and women who can fashion a full-
time, lifelong career upon their work. Indeed, for this purpose we
shall have to do much more than raise salaries. We shall have to
create a structure within the profession of elementary teaching whereby
merit 1s given due zecognition, and wherein advancement from one level
of specialized teeching to another, involving increased responsibility

rd rewards, can :ontinue over a long span of years withou+ being ai-
(,Nerted from teaching to administration.

: And so we return to the question with whch we began -- What is a
teacher? 1In part the answer will be determined by the decisiens of
soclety, by the demands which it places upon teachers, and the support
i1t provides. 1In part the answer will be determined by the decisions of
of these individuals who dedicate themselves to a career of scuolar-
ship and ¢f "helping to learn." It is not overly dramacic to say that
these decisions will turn out to be critical in shaping the destiny of
manking.

It falls to us, the contemporary scholars and educators, to point out
the possibilities to Soclety and to inspire the individuals who will
follow us. .

Full Tt Provided by ERIC.
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Page 1.1
Part 1: The system of whole numbers

Chapter 1: Number systems; what we learn first.

§1 (Track A)

A number system consists of a set of objects called

numbers, together with certain things we call operations

. on the numbers. In Part 1 we shall study the svstem of

whole numbers, 0, 1, 2, 3, ... , together with the fam-

Jliar operations of addition k+) and multiplication (+)
on these numbers. In Part 2 we shall study number sys-

tems involving the integers, which in addjtion to the

whole numbers include the negative integers -1, -2, -3, ...,
and in Part 3 we shall deal with number systems involving

the rational numbers, which in addition to the integers

include numbers such as %3 - 12/7, etc.

There are too many whole numbers for us to write down
a name for every one of them, so we often content our-
selves with writing names for the first few and then
using three dots to indicate the others. .o; 1, 2, .:. .
We shall use the letter "W" as a name for the set whose
elements are all of the whole nuﬁbers o, 1, 2, ... .

If we have written the names for several objects,
say the Eiffel Tower and the city of Moscow, and if we
wish to talk about the set having those objects as its
elements, we form a name for this set by enclosing the

list of objects within braces. For example, (Eiffel
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Tower, Moscow] is the set whose two elements are the indi-
cated tower and city. Using this convention we seée that
(0, 1, 2, ...} is the set of all whole numbers. that is,
the set W. We express this by the sentence
(0, 1, 2, ...} = W.

-

" 'The equality sign means that the thing named (or described) =

on the left is the very same object as the thing named on
- the right. (For example, we can write: Pierre Curie = the
husband of Marie Curie. )
| If A is a set having several elements (of any sort
whatever), we can attaéh a whole number to A by a process
called counting its elements. This process is usually the
way in which numbers are first introduced to young children.
) We shall use the symbol "n(A)" to denote the number ob-
| tained by counting the elements of A; in other words, n(1)
= the number of elements in A. r'or example, |

n({Moscow, Eiffel Tower}) = 2.

A child learns to count by imitation. In order for us %
toc understand the process of counting we must analyze the ;
components which enter into this process.

In the first place, an obviously important ccmponent

is the recital of the numbers in a certain fixed order:

one, two, three, ... . If a child begins mixing up the

order of the numbers, say one, four, five, two, ..., he is

not likely to arrive at a correct count.

In the second place, the numbers thus recited in their
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standard order are "attached" to the objects being counted --
for examplé, by touching the objects one at a time as the
numbers are called oﬁt. This is often a difficult process,
for every object must be touched (i.e., must have a number |

attached to it), yet no object may be touched more than

-

---once. If we continue this proncess we arrive at a last ele-

ment of the set A, that is, an element such.that, after it
has been touched, there are nb elements oi A left untouched.

The number called out as we touch this last element of
the set A is n{(A) -- t.e number of elements in A.

~ If there are very few elements in A, it is not too

hard to remember which elements have already been touched
(i.e., counted) at each stage in the counting process. If,
however, there are a large number of elements in A, if they
happen to look very like one another, and especially if
they are scattered in a very disorderly fashion, then the
process of counting by touching can become exceedingly
difficult -- for a grown person as well as for a child.
For under thesé conditions it becomes difficult to tell,
after a while, whether a given element of A has been left
out or has been counted before.

What are some of the ways we can ease.the burden of
& difficult counting job? One way is t6 felieve our memory
by marking each objecl in some way as we touch it; even so,
in a great crowd of objects we may not find it easy to be

sure whether, at a certain stage, every object has been

i
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marked. A quite different method is to “"line up" the ele-
ments of A (if, that is, they can be easily moved about).
Once the elements have been arranged in a linear array, one

after the other, the counting process becomes greatly

simplified. .
’""I;deed, if the objects of a set are all 1lined up in
a row, about the only thing phat can go wrong when a child
" tries to coun* them is if he runs out of numbers. That is, ]
the child touches one of the objects and calls out a number,
then he moves on to the next object but he doesn't know
which number comes after the last one he called out.
Of course this doesn't often happen to grown-ups in
our society, but among young children it happens frequently.
First a child may learn to count to three; then to ten, then
to thirty, then to ninety-nine. Eventually, he no longer

takes pride in how far he can count because he comes to

a adbad,

understand the systematic method of naming the numbers in

their standard order (that is, the numeration scheme). He

then sees that he can count "as far as he wants".

§2 (Track B)

1. Notation for sets. A set is an abstract object

associated with certain other obJects'which are called its

elements, or members. Given any objects whatever, there is

a set having no other elements but them. Furthermore, the

-~ elements completely determine a set -- it js impossible to

ERIC
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Page 1.5

have two different sets which have exactly the same ele-

ments. (This is known as the principle of extensjonality.)

For this reason {0, 1, 2, 3}, the set whose elements are
the numbers O, 1, 2, and 3, is the same set as (o, 3, 1, 2},

the set whose elements are the numbers 0, 3, 1, and 2.

That is, we have (0, 1, 2, 3] = (0, 3, 1, 2]. We see from
the principle of extensionality that if A and B are two

is not an element of the other.

The set {0, 2, 0, 3, 0, 1, %, 3) is the set whose ele-
ments are the number O and the number 2 and the number O
and the number 3 and the number O and the number 1 and the
number 4 and the number 3; that is, it is the set whose
elements are the numbers O and 2 and 3 and 1 and 4. Hence
we may write (0, 1, 2, 3, 4} = (0, 2, 0, 3, 0, 1, 4, 3J.
Furthermore, we have (0, 1, 2, 3, 4} = the set of all whole

numbers less than 5.

2. Exercise. Consider the.following sets Z, H, B,
C, and D.
Z = (0, 2, 4, 8, 5)
H = the set of all female presidents of
the U.S.A. during the 19th century.
B=(8, 4, ¥, 0, 2, 0, 6)
()

D = the set of all even whole numbers less than 8.
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(a) For each pair of distinct letters chosen from among
"z", "H", "B", "C", and "D" form a true statement by
employing one of the symbols " = " or " # " between
the letters.

(b) How many elements does the set (Z, H, B, C, D} have?

Py

(c) n(i)n;hé. -Combute n(H), n(B), ﬁkc), and n{D).

~

3. Empty sets. The set H (in the previous exercise)

is said to be empty because it has no elements. Similarly,
the set C is empty. Actually, there is only one emnty set,
since if A and B are any sets each of which is empty, then
we must have A = B, because if we had A # B then either A
or B would have to contain an element which is not in the .
other -- by the principle of extensionzlity mentioned in
item 1 above. A common name'for the empty set is " ¢ ",

Thus ¢ = { }.

k. Exercise. Give three different descriptions of

the empty set. (Compare the description of the set H in

Exercise 2 above. )

5. Exercise. Indicate whether each of the following

sentences is true or false. Justify your answer.

(a) If x,y are any persons such that x = y, then also
thé father of x = the father of v,

(b) If x,y are any persons such that the father of

o X = the father of y, then also x = y.

ERIC
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Page 1.7

5. Classroom discussion. Discuss ways of determining

whether two given sets have the same numoer of elements,
and if not which set has more elements. Some ways do not
require the use of numbers at all. Are there ways which

apply to sets of movable objects which cannot be used with

two sets of planted trees?

7. Classroom discussion. Using only the 3 letters

"A", "B", and "c", discuss several different methods for
combining them to obtain a system of names for each of the
wi:dle numbers O, 1, .;., 20. Recall the Roman Numeral Sys-
tem -- how many whole numhers are named in this system

using only the letters "I", "V", and "X"?

§3 (Track C) '
1. Describing objects 2nd sets. At the kindergarten

and first-grade levels there is an abundant supply of small
physical objects in every classroom -- crayons, blocks,
books, for example. Givé the children much practice in
describing sets having these objects as elements. At first
they will form "naturally grouped” eclements, such as all

the crayons in a certain box, or all the books on a certain
shelf. But thev should then be led to form other sets con-
sisting, for example, of a certain book and two certain cray-
ons. At first the specific items may be identified by
pointing and saying "This", but children should be led to

SRV —




Page 1.8

describe objects without pointing, such as "The paper on
the teacher's desk which is nearest the window". Make a
game out of this.

Children should be led to bestow letters as temporary

names for designated objects, e.g., "Let A be the window at
e —the front of the room".-Then they should use the symbols — 7
"="and " ¥" between such letters to form true state-
- ments. (They can thus write sentences before they can spell.)
+ They should also use the phrases "equals" and "is unequal
to" orally, as in "The piece of chalk on the floor equals }
the piece of chalk used by Robert to write his name".

Introduction of the empty set will provide lots of fun
as children delight in impossibilities: Each child should
give some description of the empty éet, e.g., "the set of
children with 5 ears", or "the set of chairs hanging from
the ceiling".

Describing unit sets, i.e., sets containing exactly
one element, can also be fun. is the set of all boys in
the class who have a sister named Sue, a unit set? If not,
how about the set of all brown-eyed boys in the class who |
have a sister named Sue? Have each child describe a set of
people in the classroom, and discuss the question whether
there are two different descripfgons of the same set; use
the language "equals" or "is unequal to" between two set-

descriptions, as appropriate.

ERIC
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§4 (Track A)
The need for a schematic way of naming the whole num-
bers arises because the numbers g0 on and on -- there is
no last one. However far along we get in counting, there

1s always a next number beyond the one we are at. For

- - ey - - v . = R R

this reason we can never hope to give individual names to

4
B

the successive numbers in an unrelated way, as we can to

 the successive children of a family. If we want each whole

number to have a distinctive name, we nee? a numefation | i
scheme which tells how, given the name of any number, we ]
can form the name of the next number from it.

As we have indicated above, at a certain stage child-
ren "catch on" to this scheme, aud then they lose interest 1
in the game of counting higher and higher. But the scheme

is seldom described explicitly to them by a teacher, and 1

indeed a clear and full mathematical description of the
numeration scheme becomes quite difficult and sophisticated.

Let us see how one would begin.

First, of course, come several numbers to which we do
give separate and independent names. These are the first
ten whole numbers, denoted by the familiar arabic numerals:
0,1, 2, 3, 4, 5, 6, 7, 8, 9. The order of these is estab- 4
lished in the manner indicated by the display in the pre-
vious sentence, and this plays a key role in describing

~—the scheme for naming the later numbers. In order to have

r)_ & convenlient way of referring to this order let us agree
h. -

i
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that whenever we are given any whole number x, the number

which comes next after x will be called the successor of X,

and will be denoted S(x) for short. Thus S(0) = 1,
S(1) = 2, s(2) = 3, etc.

Now then, after the numbers O, 1, ..., 9 comes another

set of whole numbers ‘each of which will be hamed by a pair '"“%
of the arabic numerals, written one after the other. The

- right numeral of this pair may be any of the ten numerals

whatever; the left one may be any numeral except 0. Such

a pair we will call a two-digit numeral.

Now in order to describe which two-digit numeral will
denote which whole number, we have to specify (a) which
two-digit numeral comes first, i.e., which one denotes S(9),
the next whole number after 9, and (b) a rule which tells
us how, given any two-digit numeral Xy which denotes a
whole number, we obtain the two-digit numeral which de-
notes successor of that number. This we do as follows:

Rule for using the two-digit numerals.

(2) S(9) is denoted by the two-digit numeral 10;

(b) Given any two-digit numeral Xy, the successor of
the whole number denoted by xy is denoted by x S(y) if y is
not 9 (case 1), or by S(x) 0 if y is 9 and x i5 not 9
(case 2). 1In case both x and Yy 2re 9, then the successor

of the number denoted by xy is not denoted by any two-digit

—numeral, but is the first of a series of.numbers which are

[»7 denoted by three-digit numerals.

ERIC
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It is probably worthwhile for the reader to elaborate
the ideas.used in the preceding paragraphs to give a pre-
cise mathematical‘déscription of the scheme for using three-
digit numerals as names for certain whole numbers which
.f;llow those denoted by the two-digit numerais. He will

.mxhen~see-how,~inwprinciple, one- could-describe -the-scheme - —da

for using numerals composed of any fixed r mber of digité.

A

- - ------—However, a single description of the scheme covering the

use of numerals containing an arbitrary number of digits

requires the use of a somewhat sophisticated principle

called mathematical induction, which we shall describe in

a later chapter.
As we have seen, the process of counting, in order to |

_obtain the number n(A) which indicates how many elements |

are in a given set A, involves a fixed crdering of the

whole numbers and the attéchment of these numbers, in order,

to the elements of the set A. The process of attaching

numbers to elements may be tou&hing-while-reciting, or it

could consist of making tags on which the numerals (i.e.,

the names of the numbers) are written and then tying these l
tags to the elements of A, or it could consist in writing
names of the elements of A in a list opposite the names of
the numbers, or it could be by still other methods. From

the mathematical point of view it makes no difference which

—.method of attaching numbers to the elements of A is _employed.

to which object, not how the attachment is brought. about,

| ERIC J

The only thing that matters is to know which number is attached ‘
1
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In o;der to deal with the question of attachinz numbers

to objects in a neutral way which can represent any possible
manner of causing the attachment, the mathematician has in-

vented the notion of a function. A function can be thought

of as an abstract device for indicating which number is at-

tached to which object in a given set.  If the function is ~~~—
denoted by the letter "f" and if "b" denotes some element
7 7 7 of the set A, then we use the notation "f(b)" to indicate

the number attached to the element b by the function f.

For example,.if we wish to count the elements of the
set (Moscow, Eiffel Tower], we could do so by means of the
function f such that |

f (Moscow) = 1 and

(;’ f (Eiffel Tower) = 2.

We get the same function f whether we paint the numerals
"1" and "2" somewhere on the city and the tower, or whether
we write the numerals on balloons and float them over the
city and the tower -- just so long as it is the "1" which
is attached to the city and the "2" to the tower. Another
way to count the elements cf the same éet would be by means
of the function g such that

g (Moscow) = 2 and

g (Eiffel Tower) = 1.
Using the function f, the last element to get counted is
the Eiffel Tower; using the function g, the last element

3 to get counted is the city of Moscow. Either way, the

1
3

©
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number which is attached to the last element is 2. Hence 1
n( (Moscow, Eiffel Tower}) = 2.
For the particular set just considered it is easy to
see that the specified functions f and g give the only

possible orders in which the elements of the set can be

counted, and of course in both cases the same number gets
attached to the last element to be counted. But will a
‘similar result be true in counting the elements of any set

whatever? Suppose, for example, we had a very large set, " -

say B, and that one way of counting its elements ended by
attaching a certain whole number x to the last element to
be counted, while a different order of counting the ele-

ments of B ended with a number y, differei.t from x, being ?

attached to the last element to be counted. Then what
would n(B) be? Would we have n(B) = x or n(B) = y? Would |
the phrase "the number of elements in B" have any'sense at
all? -

The fact is that this sitﬁation cannot occur. The
whole concebt of "the number of elements in the set B" is
based on the supposition that there is a unique number,
n(B), which will be arrived at by any two correct ways of
counting the elements of B. But how do we know that no

matter what set B we start with, any two methods of count-

ing its elements will end up by attaching the same number

t6 the last counted element? As children, we come to be-

lieve this fact after trying out the counting process on

©
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a few sets and then deveioping-an intuitive conviction

that the same result will come ébout for other sets which
we have not tried to count. As mathematicians, hcwever,

we may not be satisfied to base the whole theory of count-

ing on such an intuitive guess: We may seek somehow to

prove the result that any two methods of coﬁntinéﬁfﬁe eié-
ments of a given set must give the same result. Such a

proof can be carried out in a branch of mathematics known

as theory of sets, but we shall not do so here.

Can every set be counted? Or are ther=z sets which in
~ "some sense have too many elements to be counted? The set
W of all whole numbers is an example of a set which we say

is infinite, or has infinitely many elements: There is no

whole number n(W) which tells how many elements are in W.
The way we see this is in noting that when we line up
all the whoie numbers, say in their natural ord=r, there

is no last one. (As noted previously, every whole number

has a successor.) But the whole process of counting the
elements of a set depenqs on arriving at a last element

and seeing what number is zttached to it. If therc is no
last element, then the process of counting does not termin--
ate and so does not give a result. *

We may conclude from the above discussion that an in-

L finite set is one whose elements can be lined up in such c

e —

———— i ——— e — . ———

way that there is no last one. However, there is one ex-

') ception to this rule. What about a set which has no elements:

©
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Can there be such a set?
We have, indeed, encountered empty sets in item 3 of
§2 above. Mathematicians find it convenient for many
reasons to deal with a set having no elements -- so they

invent one! As indicated in §2 the empty set is often de-

noted by the symbol "¢". Of course we cannot line up the

elements of 9 so as to obtain a last one; yet we do ﬁot‘

" wish to call ¢ an infinite set. We say that the number of

elements in ¢ is 0, and write |
n(s) = O.

This is why, when we'begin counting the elements of a set

which is not empty, we begin with the number 1. The nuw-

bers 1, 2, 3, ... are sometimes called the counting numbers.

Mathematicians also call them positive integers.

§5 (Track B)

1. Exercise. The set W of all whole numbers is an

example of an infinite set. Give an example of a different

[3

infinite set, all of whose elements are whole numbers.

Also give an example of an infinite set having some elements
. which are not whole numbers, and an example of an infinite
set none of whose elements is a whole number. In each case

Justify the statement that the set in question is infinite.

2. Exercise. A set which is not infinite is called

finite. Let G be the set whose elements are all finite
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sets of whole numbers. Is G finite or infinite? Justify

your answer.

3. Exercise. Recall that if x is ény whole number,

then S(x) is its successor, the next whole number after x

in the natural (counting) order. Now, suppose that x and

Y are whole numbers such that

S(s(s(x))) = s(s(y)).

Do we necessarily have y = S(x) ? Justify your answer.

4. Exercise. In a later chapter we shall study the

operation of additior, + . Using your intuitive knowledge
of this operation, determine in each éase below a number y
which satisfies the indicat=d condition.

(2) s(s(y)) =5

(b) S(H+2) = & + S(y)

(¢) 3+ 2=5(s(5(y))) - _

(@) v+ 4 = s(s(s(5(s(%)))))

(e) 5+ y = 5(5(5(2))).
A number y which satisfies an equation (i.e., makes the

equation true), is called a solution of the equation. The

set of all solutions to a given equation is called the sol-

ution set of the equation. Make up an equation similar to

those above whose solution set is empty.




 aaainaisismtamas

Page‘1.17

5. Exercise. (a) Emplioy the Rule for using the

two-digit numerals, given in §4, to determine the second

- two-digit numeral and the fourth two-digit numeral, ex-
plaining how you obtained these by the rule.

(b) Define what the three-digit numerals are,

andmﬁakemup~a~Rule~fer~using~three-digét—numera}symfo}lew-——————

ing the general pattern used in §4 for two-digit numerals

~

and modifying that pattern as seems appropriate. (Hint: 1

.What is Qhe first three-digit numeral, i.e., the three-

digit numeral which denotes the successor of the number
denoted by the last two-digit numeral? Then describe how, )

given an arbitrary three-digit numeral, we obtain the next j

one; this description will involve enumerating several cases.)

——e e - ————

6. Exercise. Suppose a child has three checkers

which we shall call a, b, and ¢c. If he counts them by ]

touching them in the order b, ¢, a as he calls out "one,

two, three" he is atiuching the number 3 to a, 1 to b, i

and 2 to c. Mathematically speaking we say that he is em- 3
ploying the counting function f such that

f(a) = 3, £(b) = 1, and f(c) = 2.
We/could also describe f by giving a table of values for

it, as follows:

! f(x)

X

a3
| b1 T
:;? c ; 2 . g

©
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(1) Give equations describing the counting function g

employed when counting the checkers in the order ¢, a, b

(1i) How many different counting functions are there

‘altogether for the set of checkers (a, b, ¢c}? Make a table

showing the values for 2ll of these counting functions.

(iii) How many counting functions are there for a set

- of 5 marbles?

(iv) Try to generalize the results of (ii) and (i11)
above by finding a rule which tells how to compute the
number of counting functions for a set of n objects, where

n may be any whole number whatever.

7. Exercise. Think of the numerals 0, 1, ..., 9 as an

alphabet, and the numerals O, 1, ..., 20 as words of one and

two letters made up from this alphabet. Arrange these words

é.

in "alphabetical order".

Imagine all numerals (with any number of places) ar-
ranged in this "alphabetical order". Given any numeral n,
let Sa(n) be the next numeral after n in this order. What

is the first numeral n after o such that n ¥ S,(p) for

every numeral p?

—-—

©
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Chapter 2. Successor and order

§1 (Track A)

In the previous chapter we considered the set W of all

whole numbers, O, 1, 2, ..., and we discussed the way in

which these numbers are used to indicate how many elements

are in a given set A. The number of elements'in the set,

n(A), is determined by a process of counting, and we men-
- tioned certain mathematical concepts which underlie the

counting process, namely, the standard ordering of the

whole numbers based upon the fact that each of these num-

bers has a successor, and the method of attaching numbers

to the elements of a set as embodied in the concept of a

fundtion.

In the elementary schools it is customary to follow
the study of counting by intrcducirg the operation.of addi-
tion, and we shall adopt a similar course here. However,
before proceeding to study addition we wish to examine in
more detail those mathematical concepts we have found to
underlie the counting process.

Let us start with the notion of successor. We have

agreed that if x is any element of W, that is, any whole

number, then it has a successor, which is the next number

following x in the natural order. We denote the successor
of x by the notation S(x). Now what about the symbol S
jtself -- does it have a separate meaning? The mathemats -

cian considers that this symbol is the name of an operation:

©
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S is an abstract operation which can act on any whole nunm-
ber, that is, on any element of W, and the result of this
action is another element of W. For example, when the
operation S acts on the number 14 it produces 15, and we

express this by writing S(14) = 15. Similarly, S(1039)

= 1040. We say that S is the successor operation.

Of course the word "operation" is familiar to us from
| éleﬁentary-school mathematics; for we sﬁeak about-the opera-
tion of addition, or the operation of multiplication. 1In
contrast to the successor operation, these operations act
on pairs of numbers, instead of on single numbers. For
example, when the operation of addition, +, acts on a pair
of numbers (x,y), we denote the resulting number by the
notation x + y; in particular we have 2 + 35 = 37, which
indicates that when the operation + acts on the pair (2,35),
the number which results is 37.
We distinguish operations like S from operations like

+ and °* by saying that the former is a one-place operation

on W, while the latter are two-place operations on W.

Clearly we can expect one-place operations to be
simpler things to study than two-place operations. Since
the operation S plays such a basic role in the system of
whole numbers, it is surprising, therefore, that it is not
given a name and studied explicitly in the elementary
school. Let us investigate its mathematical properties.

First of all, because we have a numeration schenme
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whfch provides a name for every one of the infinitely many
whole numbers and which tells us how to find the name of
the successor of any given number, we can write down infin-

itely many true sentences about S, such as

S(0) = 1, S(28) =29, 5(1,385) = 1,387, etc.

These are examples of particular statements involving the i

successor operation, S, for each statement involves two
particular specified numbers. Particular statements of

this kind are often summarized in a table, as follows:

(]

x o S(x)
S i
28 29

1,385 11,387

P

!

Such a table is called a table of values of the operation S. ‘

There are other particular statements about S which
are true, besides those which are summarized in the table.
One of these, for example, 1is

(a) S(8(3)) = 5.

It is useful for us to notice that this fact can be in-

ferred, by a process of logical deduction, from the fol-
lowing two statements (which do express entries from the

table of values for S):

. (v) S(3) = 4, and
c T T T (¢) - -~ "~ s(4) = 5. T
(,, How would we carry out such a deduction, or proof?

ERIC
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First, starting from statement (b), we would conclude

() 5(5(3)) = S(4),

statement (b) assures us that S(3) and 4 are the same num-

ber; hence if we perform any operation bn S(3) we of course

..get the same result as of we perform that operation on 4.

~ the content of (d).

tions; they assert that a number formed in one way (in this
\

In particular, S(S(3)) is the same thing as S(4), which is

The next stage of the proof is to combine equations
(d) and (c) to get the desired result (a). This step is
again justified by the logical meaning of the symbol = ,
for (d) tells us that 5(S(3)) is the same number as S(4),

(c) télls.us that S(4) is the same number as 5, and so of
course S(S(3)) is the same as 5 -- which is the content of (c).
The whole deduction described above would normally be

summarized in the following form.
Iheorem. From the hypotheses S(3) = ¥ and S(%) = 5,
we may infer S(5(3)) = 5.
Proof.
(1) S(3) = &4 5 hypothesis.
(2) S(S(3)) = S(4) ; logic of = .
(3) S(4) =5
(4) s(s(3)) =5 3 by logic of = from lines (2),(3).

hypothesis.

“e

'~ Statements of the form S(S(1)) = S(2) are called equa-
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S(0) #0, S(1) #0, s(2) #0, ... .
Another important general pfoperty of the successor
operation is the fact that whenever it operates on two dif-
ferent numbers it glves two different results. We express

this by writing:

Proposition 2, For any whole numbers x,y such that

X # y we have also S(x) # S(y).

: Méthematicians have a name for this p}opérty of”S:“
We say that the operation S is one-one (read "one-to-one").
Another way of writing the same idea is this: If x,y are
‘any whole numbers such that S(x) = S(y), we have also x = y.

Other general statements about the successor function

are: For all x in W, x # S(x); for all x in W,
x # 3(s(x)); ete.

§3 (Track B)
1. The identity operation. Let us introduce another

operation, even simpler than S, of whole numbers: the one-
place operation of Identity, which is written I. It 1is the
"nothing-happens" operation, because when I operates on any
particular whole number the result 1s simply that same whole

number itself. For example, I(0) = 0, I(1) =1, I(49) = 49,

2. Exercise. (a) Make a table of values for the oper-

tion I, showing values of I for three or four numbers. Also,
“éive a few examples of particular statements which are true

) of the identity operation, I, and involve the diversity

©
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symbol, # . Finally, give several true particular state-
ments which 1lnvolve repeated use of the operation I.

(b) From the hypotheses I(S9) = 99 and the logic of
equality, deduce the particular statement I(I(I(99))) = 99.

(c) Express the following general statement about the

- answers.

operation I using letters as variables: When I operates on
~ any whole number, the result 1s that same whole number.

(d) Use variables to express the true general state-
ment that the operation I is one-one. (Hint: ref;; to the
text's discussior of the one-one property of the operation S.
~ See Proposition 2, §2.)

(e) Use the diversity symbol, # , to express two geh-
eral statements involving the operation I. |

(f) Consider the statement: If x is any whole num- |
ber, then I(x) # S(x). Is this a particular statement or
a general statement? 1Is it true or false? Justify your

3. Exerclise. Using propositions 1 and 2 of §2, prove

the general statement: If x is any whole number then

S(s(x)) # s(o).

4. Classroom discussion. Havé the class review orally

all that they know about the operaticn S, calling specific
attentlion to the meaning of the new terminology involved
with S, such as "Operation", "one-place", "one-one"_ etc.

5. Classroom discussion. Consider the two equivalent

s'orms of Proposition 2, §2. With a2 minimum of logical
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terminology discuss the intuitive basis for considering these
two sentences equivalent.

Proposition 2 expresses the fact that the whole number 9
18 not the successor of any whole number. Actually, O 1is the

only whole number with this property. One way to express th_s

~fact, using variablés, 1s as follows: 1If ¥y 1s any element of
W such that S(x) # y for every whole number x, then y = 9.
Students should find an equivalent way of expressing the 1idea,

beginning: If y is any element of W which is different from
O, then ...

§ 4 (Track c)

1. The phrase "successor of a whole number” can be in-
troduced Successfully in the earliest grades as a synonya for
"the next whole number”. One way to generate interest in and
get practice with the successop operation would be to picture

S as a_kind of machine, such as pictured here.

_\ ““—_ hopper

l S e Chute
A whole number, say 4, is put into the hopper and out of the

chute at the bottom comes its Successor, 5. Let the children

: run the machine -- that 1s, have a childg go to the blackboard

| where the machine is Pictured and have him ask others for num-
bers to put into the hopper. He then teils what numﬁer comes

out of the chute.

r- Later the procedure can be altered so that the children | i
J

/
N
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are asked to give the number that went into the hopper after
being told the number that appeared at the chute. For ex-
ample, gliven that 6 appears at the chute, what number went
into the hopper? (In this case 5). Notice, however, that

with this machine O could not appear at the chute, whereas"

any whole- number..can go into the hopper.

--- After playing with this machine for a while the -pupils
-can be introduced to the idea of a table of values for the
“successor machine"”. By setting down the results of "obser-

vation" in a systematic manner:

put in came out
3 4
8 9
J 2 3

“.3y are led to a method of recording. findings which will lay
the groundwork for later work with addition and multiplica-
"on -tables.
After working with single machines for a while, cﬁildren
can -experiment with hooking machines together, so that the out-

-put of one is fed directly into another.
N\ Z.

U

The children should make a table of values for this double -.

- machine, feeding into its hopper each of the numbers O, ..., 9.

) This should be compared with the table of values of a single

ERIC ~-
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S-machine with the same input. What relationship ls observed
between the output columns of the two tables? Can the child-

ren explain this?

§5 (Track A)

So*éar-we“have—deart*wtth“the—successor—function‘only*aS”"'
an abstract operation on whole pumbers. However, we know that
"these numbers are applied to counting the elements of a given 1
set. It is natural to inquire what the relation of the opera- 1
tion S is to the counting process. It turns out that there is
a simple answer. Namely, if x is the number of elements in a
set A, then 8(x) is the number of elements of any set obtained
from A by putting in one new element. Let us introduce some
mathematical notation for referring to such a set.

Suppose, then, that A is any set, and suppose that b is
any object which is not an element of A. Let us first form the
set {b) having b as its only element, and then let us put to- - 4

gether the elements of the two sets A and {b) to form one big

set; we call this the union of A and (b}, and use the notation

T

Auf{b} tc denote it. Thus A uf{b)} is the set formed from A by
adding the object b as a new element. Now, how many elements 1
are there in this new set, Au {b}? As we have indicated above,,
1t is pretty obvious that the number of elements in A u{b] is

the next number after n(A), i.e., we have n{A s {b)) = S(n(A)).

L

Let us formulate this observation as a proposition for ’

. later reference. ﬁ
4
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Proposition 1. If A is any set and b is any object which
1s not an element of A, then n(As{b}) = S(n(a)).

For example, if A % {Cairo, Jerusalem} and b = Suez Canal,
then n(A) = 2, S(n(A)) = S(2) = 3, n(av(b}) = n((Cairo, Jeru-

salem, Suez Canall}) = 3.

Althéugh—theuresult-expressed"tn”Propositton”I‘Tﬁ*Tﬁtu-

itively very clear, it is worthwhile to explain it in terms of
the counting process which undeflies the determination of
n(Av({b}). If we count the elements of the set Au(b}, we may
first count those elements which are in A. If n(A) = x,

the number x will be .attached to the last element of A to be
counted. At that point there will remain one uncounted ele-
ment of Au{b}, namely, the object b. The rules of counting

prescribe that the number attached to this element must be the

‘next number after the numbef X just used. This next number
1s, of course, S(x), which thus gets attached to b. Since b
1s the last element of Ay(b} to be counted, this gives the
desired result, n(Auv{b}) = S(x).

§ 6 (Track B)

1. Union of sets; The two-place operation on sets called

i g

union was introduced in §o as a method for taking any two

glven sets and forming a new one from them by combining all

thelir elements into one pig set. For example, if

A= (1, 5, 14, 16) and B = (7, 6,_5, 1, 16} we get immediately
- that the union, AuB, is the set {1, 5, 14, 16, i, 6, 5, 1, 16}.

Full Tt Provided by ERIC.
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Of course, repeating the name of an element, suéh as 1 or 5 in
this case, does not in any way change the fact that 5 1s an ele-
ment of A U B in exactly the same way ac 7 1is an element of this
set. Similarly, in listing the elements of a set the order in

which the list is presented is immaterial (as we =ee by the prin-

'ple of "extensionality). Herice we can also write A U B
= {1, 5, 6, 7, 16, 14}.

~

2. Exercise. a) Why is the operation union called a

two-place operation on sets?
b) Let c = (3, 6, 4, 16}, B = (18, Moscow, 6, 3},

G = (16, 6}, and F = 4.

(1) List the elements of the sets C uB, Cug,

FuG, Bug. .
(;" (11) Determine n(c), n(B), n(c), n(F), n(c v B),
n(C wG), n(FUE) and n(Bu E).
(111) Notice that n(F o G) = n(F) + n(G). Is this

relation true in general, that ig for any sets

F and G? Justification?

'é) IfE=(0, 2, 4, 6, 8, ... }) and D = the set of all

odd whole numbers,

(1) what is Eu D?
(11) Notice that EuD = D U E. It this true for
other sets E and D?

d) Let A be any sets. How are the sets Au A and

- A v g related to A? S T

(j e) Let A be any set. We know that if b is any object
7

©
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which is not an element of A, then Au(b} is the set obtzined
from A by adding b as a new element, and n(Au{b}) = S(n(a)).
But suppose, now, that b is an element of A. How 1s the set
Ag(b} related to A in this case? And hoy is n(Ay{b]) related to
n(A) in this case?

2. Discussion. Discuss the meaning of some of the nota-

tion introduced in this chapter. For example, which of the

expressions "S(n(A))" and "n(S(A))" is meaningful -- where "A"

denotes a set -- and what is its meaning? If "x" denotes a

whole number, is "n(S(x))" meaningful? What about "n({S(x)})"?

4. Counting functions. Recall that the mathematical no-

fion of a function may be used to indicate which number is

attached to each element of a given set A in the process of }
counting the elements of A. The numbers which get attached to i
.the various elements of A in the counting process are the num-
bers 1, 2, ..., n(A); the last number, n(A), which is attached
to an element of A in the counting process, tells us how many
elements the set A has. A functioh f which attaches the num-
bers 1, 2, ..., n(A) to the elements of A in a one-to-one

manner is called a counting function. Mathematicians also ‘

study different functions which may attach objects other than
numbers to the elements of a given set A, or which may attach
the same number to several different elements of A.

5. Exercise. Let A= (0, 2} and B= (0, 2, 5}). There

—- are Just two counting funcpions for A, namely, the function f

i such that £(0) = 1 and £(2) = 2, and the function g such that

©
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g(o) = 2 and g(2) = 1. How many counting functions are there
for B? _
- 6. Exercise. Suppose A is any (finite) set, b is not an

element of A and C = A:(b}. Let x be the number of counting i

functions/for A, and let y be the number of counting functions

for C. Can you find a simple eaquation conned@ing the numbers

x, y, and n(C)? .
7. Let A= {0, 2, 4, 6} and B = the set of all whole ' '71

numbers less than 12. ‘ i
a) Find a set C such that Ay C-= B. How many different ’

sets C of this kind are there?- How many of these are dis-

Joint from A? |
b) Find a set D such that AyD-= 'A. How many different

sets D of this kind are there? How many are disjoint from A?

§ 7 (Track A)

Let us now turn ualthe concept of order for the set W of
all whole numbers. We have seen that all of the elements of
W can be produced by starting with O and successively applying
the operation S. Of any two distinct whole numbers, say x and 1
Yy, one will be produced before the other by this process. If
X, say, ls produced before y, we say that x is less than y, or
X is smaller than y, and we write x < y. For example, we have

2 < 14, 23 < 678, but pot 3 < 0.

The fact that of any two distinct whole numbers one nmust ]

be less than the other, can be formulated as a general statement:
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F;r all whole numbers x and y such that x ¥ y, we must have
either x < y or y < x.
An eouivalent formulation is the following:
For any x, y in W, either x = y or x < y or y €< Xx.

This statement is known as the Trichotomy law for < . The

—_— -

word law 1is used simply for any true, general statement.
Sometimes the trichotomy law is expressed in a stronger
form, as follows:

Trichotom& law for <: For any x, v in W, either x = v or

x {yory <x -- and no two of these three conditions can

hold simultaneously.

Another important fact about the ordering relation, less
than ( < ), is the

Transitive law for < : If x, v, z are any elements of W

Such that x < y and v < z, then we must also have x < z.

The truth of this can be seen from the meaning of <. For if
Xx <{yand y < z, this means that in generating éll whole num-
bers from 0 by successive applizations of S, the number x
comes before y and y comes before z. But then of course x is
produced before z, which means x < z as asserted in the trans-
itive law.

There are still other laws which connect the successor

operation, S, with the ordering relation, <. For example, if

X _1s any whole number then x < S(x). &igain: If x, v are any

R —

elements of W such that x < vy, then also S(x) < s{v). Con-

€ versely, whenever S(x) < S(y) we have alss x < y.

Full Tt Provided by ERIC.

ERIC




Page 2.16
S&ppose that A and B are sets such that n(A) < n(B). Then
we say that A has fewer elements than B. Thus the relatlon <
between whole numbers provides a way of comparing the size of

two given sets -- providing, of course, those sets are finite,

so that the number of elements in each can be expressed by a

whole number.

From the relation less than, <, and the relation of egual-

ity, = , we can define a new rélation which 1is often Quitefw
useful in mathematics.

Definition of £. 1If x, y are any whole numbers we say

that x { y (read x is less-than-or-equal-to y), if either
Xx<yorzx=y.

For example, 3 £ 5 and > £ 3, but not 3 £ 2.

The new relation also obeys a transitive law. Let us
formulate this as a theorem.

Theorem. Using the transitive law for < as a hypothesis,

we can obtain as a conclusion the transitive law for <: 1If

X, ¥, < are any elements of W such that x < y and y £ 2z, then

also x < z.

To prove this, we begin by assuming that x, y, z are any
whole numbers such that x { y and y £ z. By definition of (g,

this means that either x < y or x = y, and also that elther

y <zory-=2. Thus we get 4 possible cases for cur assumptions:

Case 1. x<yand y < z
Case 2. x <yandy= 2
Case 3. x =y and y < z.
Case 4. x=yand y = 2z

o nndeiainbin ol
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We have to prove that in every one of these 4 cases we must

have x < z. That 1s, we must show that in each of these U4
cases we have either x < 2 or x = z. As a matter of fact, it
turns out that in case 1, 2, and 3 we have x < z, while in
case % we have x = z. The indicated conclusion for case 1 is

Immediate from the transitive law for <, and that for case 4

1s immediate by the 1logic of =

Actually, cases 2 and 3 can also be handled by the logic
of =. Consider, for example, case 2, where our assumptions are
that x < y and'y = z. This means that x is produced before y
when the whole numbers are generated from O by successive ap-
Plications of S, and that y is the same number as z. But then
of course x is produced before z, which means x < z as claimed
in case 2. (See item 1, § 9.) |

Other laws which hold for £ are as follows:

(1) For any x,y in W we have x < y or y £ Xx.

(11) If x,y are any elements of W for which we have both

X £y and y £ x, then we must have X=1yY.

The relation < has a natural significance in connection

with the counting process. To explain this, we must first de-

fire what it means for one set A to be a subset of another set B.

Definition. A set A is said to be a subset of another set,

B, in case every element of A is also an element of B. To in-

dicate that A is a subset of B we use the notation A c B.
Example: We have (London, Paris} < {Paris, Milan, London}

ané

C, {2, 3, Moscow} ¢ (2, 3, Moscow},

-~
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but not
(2, London} ¢ (3, London, Paris}.
‘; Now a fundamental connection between the relation £ and

the counting process can be described as follows:

- Proposition. VWhenever A and B are (finite) sets such

L

el
[}
)
]

that A ¢ B, then we must have n(A) < n(B).

To see this, suppose that A C B. Imagine that we count

 — .-

the elements of B, startineg by first counting all of the ele-
f ments which are in A before proceeding to any elements of B
T which are not in A. In this process, the number attached to
the last element of A to be counted will be, of.course, the
number n(A), since every element of A is in B by our supposi-

tion A € B. If there remain elements in B not yet counted,

this means that n(A) comes before n(B) in the counting pro-

'
'
B L R e D

cess so we have n(A) < n(B). If, on the other hand, there

are no elements of B left after those of A have been counted,

v ey Laaa T

then the last element of A to be counted will also be the last
of B and so we have n(a) = n(B). In either of these cases we

have n(A) < n(B), by the definition of <. (See § 9, Exercise 6.)

S ) o 8§ 8 (Track a)

| F In closing this chapter, let us draw attention to the many
1 Méeneréimstéfemehﬁs'(bf laws) which we have cited. Why is the

E>v¢? mathematician so interested in general statements? Actually,

g there are several reasons.

g
:
f
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First of 211, the discovery and communication of such laws

provides mathematicians with a kind of esthetic satisfaction.

Most people are not generally awarehof this aspect orf mathe-
matical work. However, to discover that something is true of
all elements of an infinite set, such as W, gives us insight

into a kind of regularity among the elements of the set which

1s not unrelated %o the_eleﬁenpmgf form in a work of art.

General statements are also. obviously economical ways of
codifying many sep2iace, independent, particular facts which
would otherwise have %0 be registered separately.

A very impecrtant use for general statements is in connec-
tion with the deductive method for organizing our knowledge,
which often leads us fo discover new, particular facts about
the domain under investigation. For instance, starting with
a few general laws which we may know, or which we may assume
as axioms, and using a few particular facts which may be known
to us, or may be given as hypotheses, we can often combine
these Dy the laws of logic into a proof whose conclusion may
be some new fact, previously unknown, or not perceived as re-
lated to the given facis.

Finally, in the domain of whole numbers we shall see that
the general laws z.2 decisive in providing justification for
the algorithms by means of which we all learn to carry out

computations in elementary arithmetic.

©
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§ 9 (Track B)
1. The logic of = . The reader who fills in the missing

steps for the proof of the transitive law for the relation <
may notice that a transitive law for = is involved. He may
well wonder why this was not explicitly listed as a hypothesis.

This was not done since those laws dealing only with the rela-

tion = are considered parts of logic, an elementary working
knowledge of which we are assuming the reader possesses.

- 2. Two _special subsets. Let B be any set. Then we have

both B £ B and g € B; in other words, every set is a subset of
itself, and the empty set is a subset of every set. The first
of these is easy to see from the definition of ¢ , since of
course every element of B is an element of B. To see the sec-
ond statement, g ¢ B, suppose that some set A i1s not a subset

of B, 1.e., that some element of A is not an element of B.

-

Thus if we had not 4 c B this would meéan that some element of
g 1s ;;E in B -- an impossibility, since & has no elements
whatever. Since it is impossible to have pnot & c B, we must
have g c B as claimed.

5. Exercise. a) Let A= (1, 2, 3}). Keep in mind %tem

2, abcve, and find all possible subsets of A. How many are there?

b) if B is any set such that n(B) = 4, how many subsets

does B have altogether?
c) If C is a set with n(C) = x, where x is some whole
nunber, generalize (b) above by finding how many subsets C has.

(Exrress your answer by a formula involving the letter "x".)

©
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k. Other ordering relations on W. Besides the relations
< and g_there are two other closely related relations which are
used by mathematicians: > (greater-than), and > (greater-than-
or-equal-to). The definitions are as follows:

Definition. For any whole numbers x.y we define x > y ¢

mean that y < x, and we define

©
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x > y to mean that y £ x.

The reader can easily see that laws for > and > hold which
are similar to those holding for < and £ respectively.

5. Exercise. Prove the following law connecting the re-

lations > and «:

For any X,y in W we have x > y if, and only if, it is not

the case that y £ x.

6. Exercise. Find a general law involving the operation.

S and the relation < , and illustrate it with a couple of par-
ticular examples.

7. Exercise. It was stated in Section 7 that if A and B
are any sets such that A £ B then n(A) < n(B). Consider the
converse statement: If A and B are any sets such that
n(A) < n(B), then Ac B. 1Is this general statement true or

false? Explain why.

8. Exercise. In §7 we gave an argument to support the

proposition that whenever we have AgB we also have n{A) < n(B).

Give a similar argument to support the following proposition:
If A,B are any sets such that n(A) < n(B), then there is a sub-
set C of B such that n(C) = n(A). How would you find such a

set C?

N
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9. Exercise. Justifying your answer, indicate whether or
nct the set relation & satisfies:
i) a transitive law
11) a trichotomy law.

- 10. Classroom discussion. Discuss exercise 9 above. The

discussion may touch on examples of other relations obeying c.ie

—or both of these laws, on some general notions about order rela-
.tions, or about still more general relations.

A 1i. Exercise. Below there is stated the hypothesis and

conclusion of a theorem, together with a sketch of a proof.
Supply the missing parts of steps (3), (4) and (6), and the
-missing parts of the justifications for steps (2), (%), (5)
and (7). Justifications may include references to theorems or
propcsitions given in the text.
Theorem. Hypotheses: (1) A and B are sets with x = n(A)
and y = n(B), |
(11) ¢ is not an element of A, and d is not an
element of B, 4 _
(111) Au (e} = B v (a}.
Conclusion: X =Y.
Proof: (1) x = n(A), y=n(B) ; - . hypothesis (1)
(2) ¢ is not an element of A,

and d is not an element of B;

(3) =B v (d}); hypothesis (111)
() n(Au(c}) = S(x) and
n{Bu {¢)) = ;

from steps (1) and (2),
by '
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(5) n(Aule}) = n(Buld)) ; by logic of =
(~ | - from step .
(6) = S(y) ; by logic of = from
steps (4) and (5).
(1) _x=y ; from step_(6) since the
operation S is s
_ ) according to a proposition
in § 1.
§ 10 (Track A)

Mathematicians iike to illustrate the ideas of their
theories with geometric diagrams of one sort or another,
and the theory of the number systems is no excéption. One
of the simplest ways to picture the whole numbers is by
means of a "number line”. This device has recently become
quite common in elementary mathematics classes.

: It will be recalled that the geometric concept of a
straight line is such that a line is considered to extend

indefinitely in opposite directions, so that it has no ends.

Of course when we draw a picture of a line we only repre-

sent a part of it, since in practice we must placé our pen-
' cil down on a first point of the drawing and remove it from

a last point. Examples:

) _— .

©
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Technically, such a part of a straight lime is called a

line segment.

Actually, for purposes of picturing the whole numbers
we do not require a whole line, but only a half line (Also
called a raz). Customarily we draw this horizontally, pro-

ceeding to the right of our starting point, thus:

)

A
7

We place the arrow head at the right end of our drawing to

Indicate that we wish to consider the unending half line
which continues indefinitely to the right. Sometimes,
however, we shall find it convenient to draw a number 1ine
pointing in some other direction, such as upward.

Now we indicate certain points on our half line by
meahs of small circles, large dots, or little cross marks.
The left end-poiht of the ray is one of these mgrked points,
and we label it with the numeral 0. We then choose some
other point of the ray to the right of the end point, and
label it 1. We often refer to the points ﬁearing chese
labels as "the point 0" and "the point 1". The distance

between these two points is called the unit distance of the

number line.
Now, starting at the point 1, we lay off to the right

of it the unit distance, arriving at -~ new point which we

label 2. Then the same distance is laid off to the right
of 2 to reach a new point, labeled 3. Of course on a given

vlcture we can generally fit only a few points. However,

©
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since the ray proceeds indefinitely to the right, we can
imagine that every whole number is assigned as a label to
some point of the ray. The ray, together with the special
labeled points, is called the whole number line. A picture

would look like this:

-

e

o 1 2 3 4 5 6 7T

&
\ 4

S
7

the operation S§ and the relation < in various ways. For
iInstance one way to picture the operation 8 is to draw

little curved arrows above the line, starting from each
numbered point x and finishing at S(x). This would look

as follows:

Q/\- &/—_—\A D,
0 1 2 3 y

These curved arrows suggest a motion of the line, in
which the line moves one unit distance to the right. We

can 1llustrate this motion by drawing the number line in

1ts 1initial position, and then under it we draw the line
in the position it would occupy at the end of this motion,

as follows:

N— — - —>
N 1 é\ 3 u\
\ - \ \
\ \
AN \ \\
\
\ \\ \\
S r \5 3 A% AN
0 1 2 3 b 7

From such a double diagram we can read off the successor of

%

\
1

©
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a number on the lower line simply by looking at the number
right above it on the upper line.
As for picturing the ordering relation, <, this is most
simply done by noticing that whenever x and ¥y are numbers

such that x < y, then the point labeled x is to the left of

the point labeled y.

~We would like to emphasize that there is no unique way
to picture a mathematical concept. For example, both the
successor operation £ and the ordering relation < can be
pibtured in ways quite different from éhose indicated above
by means of the notion of graphs, which we now proceed to
explain. |

As the framework for a graph we construct two number
lines, starting from the same point, at right angles to each
other. It 1s customary to draw one of these horizontally to

the right and the other vertically upward, as follows:

> _

1
| D2 1 21 [}

o 1T % 3 5>

These two number lines are called the coordinate axes of
the graph.
Now let us imagine all of the vertical lines which pasé
through the 1abe1ed'points of the horizontal axis, and all
of the horizontal lineg which pass through the labeled points

of the vertical axis. The points where these vertical 1lines

PN
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Intersect these horizontal lines are called the lattice

points of the graph. They are pictured as follows:

u o - o .
3 . . . .
of . . . .
10 . . . .
’ > g L 4 >
0 1 2 3 4

_/’

Notice that the labelea points on the axes are themselves
. among the:lattice points.

Now with any lattice point there is associated an or-
dered palr of whole numbers, (x,y). We get the first num-
ber, x, by following down the vertical line through the lat-
tice point and seeing which labeled point on the horizontal
axls lies at its footp (The horizontal axis is sometimes
called the X-axis.) And we get the second number, y, by
looking across the horizontal lineAthrough the lattice point
and see:ing which labeled point on the vertical axis lies at
1ts left end. (The vertical axis is sometimes called the
Y-axis.) The numbers X,y assoclated in this way with a

given lattice point are called the coordinates of the point,

and are often written near the point on a picture as a kind .

of label for that point. We often speak of the point which

1s labeled with the number pair (x,y) as "the point (x,y)".

Pictured below are the points (4,0) and (2,3).
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'l -axis 1 1

' (2,3) !
3 ® @ o000 00 0o ’ ....0 ..... 0.:...... .....

} |

|
2 ! !
1 ! ! (4,0)

+ e 4 > X-axls

0 1 2 3 T

It 1s easy to see that not only does every lattice point have

¢
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a palr of coordinates, (x,y), but that conversely, given any
pair (x,y) of whole numbers, we can always find a lattice
point havingfthose numbers as its coordinates.

Now let:us consider the equation y = &(x). If we con-
sider any ordered pair of whole numbers, such as (2,3) or

(2,4), we can substitute the numbers of the pair for the

letters of the equation, always following the rule that the

first number of the ordered pair is substituted for the let-

ter 'x", and the second number is substituted for the letter

", 1

Y- The result of such a substitution is a particular state-

ment about the successor operation which may be true or false.

For example, substituting (2,3) we get the true statement

3 = 8(2), while substituting (2,4) gives the false statement

4 = s(2). An ordered pair of whole numbers is said to satisfy

the equation if the substitution results in a true statement.
Now the graph of the equation y = 2(x) is simply the

totality of lattice points whose coordinates satisfy the

equation. Thue the graph consists of all the infinitely many

lattice points (0,1), (1,2), (2,3), (3,4), ... . Of course

we only picture a few of these.

{
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S s\ S

L g v

It is evident that all of these points lie on one straight

- iine, and we often join them by a pictured line.

[ N
>

0 - l'r 2‘: 3{ I

In the same way we can Picture a graph for the equation

= 8(y). Remembering our rule of substituting the first

number of an ordered pair for "x", the second for "y", we
see that (3,2) will satisfy this equation, but (2,3) will

not. Here is a picture of the graph of x = S(y):

/N

Ead

- N W +=
: Y

O
-
A
“.
o~

N2
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We can also draw graphs for an inequation, such as x < y.

We see that (2,4) satisfies this inequation because the sub-
stitution of "2" for "x" and "4" for "y" yields a true state-
ment, but (4,3) and (2,2) do not satisfy it. Here is a pic-

ture of a portion of the graph of x < y.

-

_ N\
4 [ ® °
— 3 . ¢
2 & ®
1
0 . X

|
1

T 5 5 4

We see that the graph of x < y consists of the graph of

¥ = S(x) together with all lattice points lying above the
latter. This reiationship between the graphs gives us a
visual image corresponding to the relationship between the

operation S and the relation < .

§ 11 (Track B)

1. Graphs on a number line. In §10 we introduced

sraphs of equations such as y = g(x), and)inequations such as

X < ¥, involving two letters (or variables, as they are

called). Even simpler equations and inequations, involving
only a single Qariable, also can be represented pictorially.
Whereas the graph of an equation with two variables is a set
of points in a plane, the graph of an equation involving one

variable is a set of points on a single number line.

\

i
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For example, consider the equation 2 = S(x). There is only
one whole number which satisfies this equation and that is 1.
Hence the graph of 2 = S(x) is represented by a single point.

—8- '

o 1 2 3

We generally picture such a graph by making a heavy dot at

points of the graph or by circling these points.

b e \

e +— '
0 I 2 2 4 7

2. Exercise. (a) On a whole number line graph the

L

equatibn x = §(2). (This means, draw a picture of the graph
of the equation.’

(b) Graph the inequation x < 4.

(¢) Graph the inequality x # S(2). (Circle the points
of the graph, using two "circles".)

(d) Explain the connection between the Trichotomy law
for the relation < and the fact that the graph in (c¢) falls
naturally into two parts.

5. Exercise. Using coordinate axes, graph the follow-

1ng equation which uses the identity operation: y = I(x).
(See item 1, §3.)

4. Exercise. Using a single set of coordinate axes,

graph the equations (a) y = 8(x)
(b) y = s(s(x))
(e¢) vy = s(s(s(x)))

What is the relation of these graphs to the graph of x < y ?
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5. Classroom discussion. The relation "to the left of"

on the number line is a pictorial representation of the rela-
tion < on the set W of all whole numbers. However, if we look
at the lattice points determined-by a pair of coordinate axes,

they do not appear-to-be "lined-up” in any natural way. Bu.

—— let us try to.order,-or "Yine—up”, these points.

At the board,. draw -a.picture of coordinate-axes and lat-
tice points, and have several studenis try to describe one or
more orderings of the lattice-—-points. This means describing
a rule which tells when-a point (x,y) comes "before™ some
other point (u,v). To satisfy -the trichotomy law, we must be
sure that for any two distinct.lattice points, one of them
comes before the ither. In other words, if we use the nota-
tion (x,y) << (u,v) to indicate that the point (x,y) comes
before the point (u,v), we must .be sure that vhenever
(x,¥) # (u,v) we have either (x,5) << (u,v) or (u,v) {< (x,y),

" but not both. The ordering may be. described with the help of
pointing, but the rule defining << must cover all the infin-
1teiy many lattice points,- not just the ones pictured on the
board.

Discuss in what ways. the-ordering << of lattice points
resembles the ordering -« of“points on the whole number line,
e.g., the transitive law. . Discuss in what ways the twc order-
'ing relations may differ, e.g., 1s there more than one lattice

" 7 -point which lacks an immediate predecessor with respect to

the ordering << ? (If_;p, can-we define some other orderings
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of the lattice points in which there is exactly one such point,
or in which there are none?)
After an ordering << has been defined "pictorially",
ife., with the help of pointing, an attempt can be made to

give a mathematical description in terms of the number pairs

«x;¥)-which-are used as labels for the Iattice points.

Among the natural ordering; likely to be devised are the
- ——-lexicographical ordepihgs of f£he number pairs induced by the
relations < and > on W. (See =x.7,Chapl, $.) If these
have not been found by the students, the instructor should
define the lexicographical ordering << induced by < and then
ask for a plctorial account of the relation << in terms of
vertical lines on the coordinate plane. Afterward, raise the

question of horizontal 1lines.

6. Exercise. 1In each of (a), (b), (c¢) below there are
given the éoordinates of three lattice points (x,y) which 1lie
on one straight line. 1In each case plot the points and con-
nect them with a straight line. Then try to find an equation
involving the letters "x" and "y" which is satisfied by the
coordinates of all threz of the given points. Finally, find
a fourth point whose coordinates satisfy the equation you

found, and determine whether or not this point lies on the

straight line passing through the other three points,
(a) (0,0), (1,2), (3,6)
(®) (3.1), (0,0}, (6,2)
() (0,4), (2,2), (3,1)
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i

T. Exercise. 1In each of (a), (b), (c) below there are

glven the coordinates of two lattice points (which of course
determine a straight 1ine). Find the coordinates of two more

lattice points on each of these 1lines.

- (a) (0,0), (3,2)

T () (0,0, (2.3)
——— (C) (0’1)’ (’4,5)

8. Exercise. Consider a geometric plane (without any

coordinate axes specified). If we mark off any two points in
this plane they can be connected by a straight line Segment
“(i.e., a Plece of a straight 1line whose ends are at the given
points). 1If we have three points marked in the plane which

do not all lie on one straight line, and if we wish to connect
each marked point to both of the others, we need three seg-
ments. If we have four marked points in the plane, no threg
of them on a single straight line, then six segments are needed
to connect each marked point to all of the others. (Make a

drawing to show this.)

Collecting the above information in a table, we have:

No. of points No. of connecting segments

2 1
3 3
y 6

Now suppose that n is any whole number. Try to find a formula,

which may 1nvolvé the letter ' ‘n" and symbols for any of the

| J arithmetical operations, which gives the number of segments

ER&C
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needed to connect each of n marked points to all of the others
(assuming no three of the marked points lie in one straight
line). Check your formula with a drawing for the case n = 5.

9. Exercise. Read the dialogue in item 2 of §12 Dbelow,

Then write a dialogue to illustrate the type of game described

in item 3 of §12.

10. Exercise. Write out an explanation of how, when we

are given a pair of coordinate axes and two whole numbers X,

.y, we can find the point labeled (x,y) on a graph.

§12 (Track c)

1. TImportance of Introducing the Whole Number Line.

The whole number line is very useful at the primary level for
. 1llustrating the whole numbers as an ordered set arranged in
increasing order from left to right, 1f the line is oriented
in the normal horizontal pcsition, or from bottom to top if
given the normal vertical orientation. It should be introduced
as soon as thne names-for the whole nuﬁbers have been learned
since 1t can represent pictorially concepts which are murh
more difficult to introduce verbally. For example, on the
number line it is immediately evident that for any two dis-
tinct whole numbers, one of them must be less than the other
(Trichotomy iaw). Similarly the transitive property of the

relation < can be easily understood visually.

2. Games using the Whole Number line. Example.

A number line is drawn on the chalk-board.
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Teacher: I'm thinking of a number between 0 and 1C. I'll

call it x . Can you guess which number x 1s?

Child: 1Is it 9?
T: No, x is l2ss “han 9. (Writes x < 9 on board.)

C: Is 1t 12

———P:- -No, X is-more than 1. -(Writes x > 1.). . . _

C:' Is it 10?

T: No, because x %5 1 .5 than §. {Points to "x < 9" on
board.j If the child s3ili does 't understand, have
him go ©“o The board and show on tThe number line which

numbers ar: less %than 10.

Is 1t 5?

No, x is less than 5. (Writes x < 5.)

Is it 2?

No, x is more than 2. (VWrites x > 2.)

Is it 3?

34 aQ 13 a 13 O

Yes, and since you guessed 1t, it's your tura to be the
teacher and we'll try “o guess what numbef xggjgg"
thinkii:g of. (Since youang childien can forget with ease,
it vwould hzlp to have hin write the number on a slip

of paper.)

After the game “he "eacher could point to The written

gstatements x 2 9 and x < 5. he former can be crossed

out and the teachzr can &s% why Che information in that state-
ment is no longer anceded, once x < 5 has been written down.

One can vary thz game in many ways. An objJective to work
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towards is having the childpen not try to guess the number,
but instead Eo ask questions that would narrow in on the
hidden number. One way to do this would involve only answer-

.ing yes-or-no type questions, and perhaps imposing some limit

on the number of questions that could be asked. As childre-

mine if there is soma minimum number of questions that would
guarantee them getting the hidden number.

3. Guessing games in the plane. Guessing games of the

above sort are also useful with reference to a pair of coordin-

ate axes. Here of course the aim is to guess the coordinates
of a point. Hence answers to questions would involve the
relation (larger or smaller) of each coordiiate of the guessed
print to the corresponding coordinate of the hidden point.

4. Drawing graphs in elementary school. Plotting points

on a coordinate axis system requires practice for children.
One way to make it more interesting would be to have them plot
points and cornact them to make some kind of closed figure
such as a friangle, square or other figure. As they achieve
proficiency at this. they can be asked to make their own sim-
ple figures on graph paper, and then to make up a table of
coordinates of the vertices of their figure. Each student

can the:: .xchange these tables of coordinates with his neigh-
bor, who would then try to reconstruct the original figures.

In this connection we should call attention to "geo-

boards". These are commercially available, but can also be

-———become more cophisticated they might be asked to try to deter- ~

Y ST S
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made easily by youngsters -- and even, in some cases, by

teachers! A geo-board is a board into which upright naills

have been hammered so as to form a rectangular array.

T T 717 71
I ] T T T 1
T T 1771

These boards are used with rubber bands. Such a band can be
stretched between ‘two nails tc form a line segment, or 1t can
be stretched around several nails to form a triangle or other
polygon -~ convex or other.

At a later stage these can be used to 1llustrate many
mathematical ideas, for instance those connected with area.
However, they can be used very early for practice in describ-
ing an array of points by means of coordinates.

5. Using a coordinate system drawn on the chalkboard,
draw a line segment connecting the point (0,0) to any other
lattice point (see below). Ask the students to find the
coordinates of another point on this line. Then see if they
can find something in common about the coordinate-pairs of
all the labeled points on the line. Have them guess what
the coordinates at the next iattice point would be 1if the

segment is extended. Similarly, start with the segment join-

ing (1,2) with (3,4) and ask for other points on the line, and
for something which all coordinate-pairs on that line have in

common.

) @3

+
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Chapter 3. Addition.

§1 (Track A)
In the preceding chapter we have examined two aspects of

the whole number system which are basic to the use of these

numbersiﬁ~counting: - the successor operation, &, -and the or- e
dering relations < and < . In the present chapter we shall
study the two—place'operation of addition, + , on the set W
of all whole numbers.
This operation is usually introduced in the elementary
schools in terms of the counting process. In order to add
two given whole numbers x,y a child is instructed to begin
by taking two sets A and B, the number of elements in these
scts being x and y respectively. (Very often the elements
of A and of B are the child's own fingers.) He then combines

the elements of these two sets into one large set -- mathe-

matically speaking, he forms the union AuB of the two chosen
sets -- and counts the number of its elements. The ré;ulting
number, n(AuBj, is defined to be the sum x + y of the two
given numbers.

Basically, this is a perfectly satisfactory way of ob-
taining a mathematical definition of addition, providing we
talce care of two details. The first of these is that we must

make sure that the two chosen sets, A and B, are disjoint,

-1.e., that they have no common elements. Ordinarily this

- point is not mentioned ekplicitly in the elementary school,

{
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or at/any rate is not stressed, since the teacher can rely on
the particulaf sets A and B turning out to be disjoint just
from the way in which tﬁey are chosen -- e.g., A may consist
of fingers from the left hand, B of fingers from the right

hand, and so of course the two sets will have no common ele-

~—~~ments:w~1%*is“intuitively“clear;*however;“that“If“thé“géts A
and B have several common elemepts then the combined set, AUB,
will have fewer than x + y elements in it.

How does;fhe mathematician symbolize the fact that two

sets, A and B, have no common elements? In the first place,

given any sets A and B whatever, there is a notation for the
set of all their common elements: AAB. This set, consist-
ing of all those objects which are in both A ang B, is called

the intersection of A ang B; Ncw, to say that two given sets

have no common elements is simply to say that their intersec-
tion is empty. Recalling our symbol g for the empty set,
we see that to express the fact that A and B are disjoint we
can write: AnB =4 . |

We have observed above that if n(4) = x and n(B) = y,
then the condition ANB = £ must be satisfied 1t we are to
have n(AUB) = x + y. But there is a second point we must
consider in connection with the elementary-school way of in-
troducing addition, before we can base a precise mathematical
definition upon it. This second point is somewhat more subtle,

80 let us examine it in detail.

Starting with given numbers X,y of the set W, a child

Full Tt Provided by ERIC.
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chooses disjoint sets A and B so that the number of elements
in A is x (i.e., =o that n(A) = x ), and so that n(B) =y .
The child then forms the union, AUB, counts the number of
elements n(AUB), and is told that this number is x + y .

Of course another child in the class, when the same numbers

-

- x and y are given, will generally not choose the same sets A

and B as the first child -- espgcially if each child is taught
to make up the chosen sets using his own fingers as elements!
So the second child chooses a different pair of disjoint sets,
say C and D, with n(C) = x and n(D) = y ; he then forms the
union of his sets, Cg)D,'counts its elements getting n(CuD),
and is told that this number is the required sum, x+ y .- |
But how do we know that the number of elements in CuD 1is
/ the same as the number in the set AUB which the first :hild
is counting? True, A has the same number of elements as C --
this number being x . And B has the same number as D --
this being the number y . So we expect that. AuB will
turn out to have the same number of elements as CuD . But
why do we expect this outcome? And is an expectation the
same thing as mathematically certain knowledge? One thing is
clear -- if we ever had a case where n(AuUB) turned out to
be different from n(CuD) , i.e., where n(AuvB) # n(CuD),
then it wouldn't make sense to call both of these numbers
X+ Yy . Thus, from the mathematical viewpoint this method
- —of--defining - addition-depends upon a prior knowledge that in
ERi€; fact we will have n(AuUB) = n(CuD) 1in every case.

Aruitoxt provided by Eic:
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Let us formulate the desired result as a theorem.

Theorem. Let x and y be any whole numbers. Let
A, B, C, D be any sets such that: (i) n(A) = x and
n(c) =x, (i1) n{(B) =y and n(D) =y , and (1ii) AAB =4

and CAD = # . Then we must have n{AuB) = n(CuD) .
In elementary school we come to believe this result on
the basis of experience. That is, we try it out using several
choices for x, 'y, A, B, C, and D, and we find that in each
case we get n(AuB) = n(CuD) -- or at any rate, if we don't,
the teacher tells us we must have made a mistake!
However, a mathematician is néver satisfied to establish
a statement about all numbers x and y, or about all sets
A, B, C, and D, just by trying a few cases. He wants to know
whether it 1s possible to prove that the desired result will
be obtailned in every case. -
Of course every proof must start with some facts, or
principles, which are used in the proof. A proof of the

above theorem can be given, based upon the principle of math-

ematical induction. (We have mentioned this principle in

Chapter 2, but without formulating it explicitly; we shall

defer a formulation until the end of the present chapter, §9+)

Once the theorem is ectablished, we are justified in formu-

—3lating the following definition of addition.
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First Definition of Addition on W. We define + to be

the two-place operation on W such that, given any numbers x,y
of W, the number x + y (called the sum of x and y ) is
obtained by first choosing any disjoint sets A, B such that
n(A) = x and n(B) = y , and then letting x+ y be the

number n(AuB).
méhis_défiﬁitioﬁ is Justified by the preceding thebrém.
The reader may be surprised to see the word "First" in
the title of our definition above. Can we have more than one
definition for a given concept? Do we need more than one?
The answer 1s that when a mathematician is developing a
particular mathematical theory he needs only one definition

for any particular concept he wishes to introduce. Similarly,

‘he needs only one proof for any particular theorem he wishes

to establish. However, in general he has a choice of more
than one definition, or more than one proof, which he can
use at each stage. It is important for a mathematics teacher

to realize that there 1s almost never a unique way to solve

a given mathematical problem or attain a given mathematical
goal. One of the most widespread faults in elementary mathe-
matics teaching is the insistence that all students do a given
type of problem in a rigidly prescribed manner. This stifles

the processes of exploration and discovery, and the creative

‘activity of developing original ways of doing things, which

provides much of the excitement of mathematics. Of course,
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to enéourage such creativity a teacher must know how to rec-
ognize a matnematically satisfactory answer to a given prob-
lem even vhen it is different from the solution worked out
in the teacher's edition of the textbook. To help develop

such an ability we shall often exhibit more than one possible

‘way of ‘defining a given concépt, or more than one way of
proving a given result, in thesg notes.

Our first definition of addition was based on the use
of the whole numbers in counting the elements of certain sets.
Let us give another definition now in terms of the successor
operation. The reader may recall that multiplication is
often introduced as "repeated addition in elementary school;
we will examine this in the next chapter. The point we want
To make at this time is that addition also can be introduced
as the repeated use of some other operation -- namely, of
the successor operation, S .

Second Definition of Addition on W. We define + to be

the two-place operation on W such that, given any numbers

X,y of W, the number x + y (called the sum of x and y)

is obtained by applying the operation S successively y

number of times to the number x . In symbols:
x+y=35(....5(5(x))....)

j f\‘—/
Yy applications of &.

In case y = O we apply S no times, so that x + O = X.

ERIC
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For example, to compute 2 + 3 by this definition, we
would compute S(8(8(2))) = 2(8(3)) , since 5(2) =3
= S(4) , since S(3) =4
=5,

To compute 2 + 3 by the First Definition we would first

choosevseté~ﬂAandAB~y~say—~A~=u{George—Washington7~Abraham*—
Lincoln} and B = (Paris, London, Bangkok}, such that

n(A) =2 and n(B) =3 and Ar{B =g . We would then form
AuB , namely,

{George Washington, Abraham Lincoln, Paris, London,

Bangkok)}, and finally we would count the number of elements

in this set, n(AUB) , getting the same answer 5 as ve got
above when we used the Second Definition. The fact that our
two definitions of + will give the same answer for every
pair of whole numbers X,y 1s something a mathematician
would wish to prove, but we shall simply take it for granted
in our present treatment of the subject.

Using either definitioﬁ of + , wé can establish éngreat
many particular statements about this operation such as the

fact that 2 + 3 = 5 , which was derived above. For example,

we get such facts as 0+2=2, 8+1=9, L4+ 4 =8,
etc. Often we collect together facts of this kind into a

table of values of + , or an addition table. For example,

a table giving all sums x+y for x,y =0, 1, 2, 3 would
. .__.look like this:

| ERIC
%
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+ 0 1l ! 2 ! 3
0o o) 1l 2 3
1 1l 2 3 4
2 2 35 4 5
31 3]@®| 5] 6 .

“Tofind 3 + 1 im this table we locate 3 in the left map-
gin, 1 at the top marg’ , and\find the entry which is across
from the 3 and under the 1 , nanely, the circled 4.

So 3+ 1=214.

In the elementary schools it is customary to memorize
the facts contained in a table of this kind. For example,
one often memorizes the value of all sums X+ y vhere x,y
are any of the numbers O, 1, ...s 9. However, no one can
write or memorize the values of x+ y for all whole numbers

'x,y because there are infinitely many of them. What we do

in practice is to use the (memorized) table of sums of one-

digit numbers, together with a certain procedure (or algo-
rithm, as i1t s called). Both of these together enable us to
compute the sun of any given two ﬁhole numbers. One of the
principal thrusts of recent elementary mathematics curriculum
revisions has been to get across to students an understandihg
of why these algorithms lead to a correct computation of sums
in every case. We shall see that from the theoretical point

of view such an understanding depends critically on the general

-8tatements which are true about the operation of addition.

Le% us, therefore, turn our attention to some of these.

A,
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§ 2 (Track B)

1. Class Discussion. According to the First Definition

of addition on W , finding the sum of two whole numbers

x and y first requires the choosing of two disjoint sets

A and B such that n(A) = X and n(B) =y . If xand y

are small enough this choice is easy, for ones own fingers

-~

will do very well. However, what if "x and y -are very large? -
How can we construct sets large enough for zddition of any
whole numbers x and y ?

2. Exercise. (a) Find two sets S and T such that

n(SuT) = n(8) + n(T) .

(b) Find two sets W and V such that
n(WuV) < n(W) + n(V) .

(¢) cCan one find sets W.and ¥ such that
n(W) + n(V) < n(WyV)? Explain.

(d) Let A =-[l, 2, 3} . Make a list of all sets B
such that AnB =B . (There are 8 of them.) What do they
all have in common? _

(e) Letting A = {1, 2, 3} as in part (d), how many
sets B are there such that ANnB = A4 ?

(f) What property is common to all those sets B in
part (e)?

3. Exerclse. The theorem which justifies the First

Definition of addivion states that if A, B, C, D are any sets
such that (1) n(a) = n(c), (i1i) n(B) = n(D),

- {441} AnB = g4, and (iv) CAD = g, then we must have
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(v) n(AuB) = n(CuD). However, it is possible to have sets

A, B, C, D which satisfy (v) even though (i), (ii), (iii),

-n(B) = n(D) ? Why? - —

4, Exercise. Compute O + 4, first using one of the

definitions of addition given in §1 then using the othar def-
inition.

5. Project to be written up and subsequently discussed.

Find a child around five or six years of age who is familiar
with the names of at least the first five or six whole numbers.
At this age most children have s.::» ideas concerning very

simple sums, such as "two plus two."

and (iv) are not all true. Find sets A, B, C, D such that
n(AuB) = n(CuD) and AAB =g, CaD = 4, but n(A) £ n(C)
(and also n(Aj} # n(D) ). 1Is such an example possible if

J Using as light a touch
as possible, try to discover Jjust what these ideas are. You
will have to be understanding and skillful, for children this
young are not always very verbal and are put off quite easily.
Malze an attempt at figuring out how your subject detefﬁines
different sums. Do the two definitions of addition given in

the text play any part in the child's conception of adding

v

numbers? Write up your observations and comments and discuss

them in class.

6. Class Discussion. In §1 two definitions are given

for the operation of addition. Why do we not say that these
two definitions define two distinct operations? Discuss a

way in which one might see, intuitively, that the computation
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of X+ y by the Second Definition will give the same result

as by the First Definition, no matter whal whole numbers X
and y we have. |

Suggestion: Starting with disjoint sets A and B having
x number of elements and y number of elements respectively,

-we form AyB (according to-the First Definition) by combin- - ———

ing the elements of A and B 1into one big set. Now suppose
we carry out this combining process by carrying the elements

of B one at 2 time over to A, thus enlarging A through

a series of intermediate sets until AuB 1s achleved. 1If
we keep track of the number of elements in these intermediate
sets, do we see any connection with our Second Definition of

addition?

§3 (Track C)
1. Introducing Addition. One of the requisites for

finding the sum of two whole numbers x and y, according to
the First Definition of Addition,is finding two disjoint sets
A and B with n(A) = x and n(B) = y. The manner by which
these two sets are chosen and counted is mathematically unim-
portant, but children should be brought to realize the import-
ance.of the fact that it doesn't matter which sets are selec-
ted -- a fact which was formulated as a theorem in §l1.

In order to facilitate the discovéry of this fact, how-

ever, when the subject of addition is first introduced, it 1s

pedagogically desirable to have some standard objects which

4
»




Page 5.12

the children can easily use as elements of sets. For example,
it would be useful to have a box of green counters marked
from one to thirty, and another box of red ones marked simi-
larly. By taking the sets A and B 1in the definition of ad-

dition to be sets of green and of red counters, respectively,

and then forming a new set (the union), children can get their
first practice in counting unions.
o Tﬁe teacher should realize, however, ﬁhat there are dif-
ferent ways of counting the union of two sets of marked count-
ers, and that by asking skillful questions the children can
be led to discover various facts about this process and thus
led to make the process more efficient.
For example, consider first the problem of obtaining x
~ green counters, x being a number given by the teacher. The
children can at first be asked to take x counters when these
are placed blank side up (no numerals showing). Under these
conditions the counting process must be carried through, of
course. Afterward the same type of task can be set when the
numerals marked upon the counters are showing. By asking (if
necessary) whether the numerals can be of help, the students
should be led (after experimentation) to realize that in order

to secure x counters they need only take those counters

marked 1, 2, ..., X == without actually counting. The game
can then be made more difficult by removing the counter marked
with;l: say, or those marked with 1 and 2.

¥ After the process of selecting a given number of colored

ERIC
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markers -has been improved, as above, attention should ve
turned to the process of counting a set consisting of x
green counters and y red ones. If the green and red count-
ers are mixed before the counting begins, then all the elements
of the set must be counted. However, the teacher should then

suggest that all the green counters in the set be counted

SRR

£

first, before any of the red ones. The children will soon
:ealize that there 1is no use in counting the green ones, for
the answer will always be x -- the glven number. Hence,
when zsked to count the v . .on they may begin the counting pro-
cess by touching the first red one and calling out x + 1,
touching the second and calling out x + 2, and so on until
the last red one is counted when the desired number, x + Yy,
will be called out.

A further level of sophistication can be reached by taking
x and y to be very unequal numbers, and asking the children
to count the union in two ways -- first counting all the green
counters before the reds, and then in the opposite order.
They will presently be led to observe‘that it is easier if
one takes the larger number first, since the counting pro-
cess (as indicated in the previous paragraph) need only in-
volve touching the elements of the second set.

In proper sequence the teacher can thus guide the child-
ren to successive levels of sophistication by using a series
of directed questions, asking such questions as "Which set

should we count first?" or "Does it matter which set we begin’
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with?” or "What about the numerals painted on the counters;

can we use them to help us count the sets A and B ?" 1In

other words possible (and sometimes impossible) points of
-departure from a previously used procedure are called into

focus for discussion and implementation (or rejection).

§4 (Track A)

The commutative law for + : For any X,y 1in _w# Qe

have X+ y =y + X.

This 1s so familiar and intuitively clear to most of us
me that some students have difficulty in seeing that the state-
ment really expresses anything at all! Perhaps the way to
begin s to notice that there are some twec-place operations
which do not obey a commutative law. Subtraction and expon-
entiation are examples -- while we will study these in later
lectures, the reader has encountered them in elementary math-
ematics courses and knows that there are numbers x,y. such
that x - y #y - X, oOr such that x° # y*. Thus, the fact
that addition and multiplication obey commutative laws sets
these operations apart from others like subtraction and ex-
ponentiation.

The evident truth of the commutative law for + 1is

..8een clearly from our first definition of addition. For in

order to compare x+ y and y + X, where x and y are aiiy
{ T gilven whole numbers, that definition requires us first to

f/ choose disjoint sets, say C and E, such that n(C) = x
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and n(E) = y. Then by the first definition of + we have
x+ y=n(CuE) and y+ x= (EuC). But CuE 1is the same
set as EyC, for in either case we form the set by combin-
ing the elements of C and of E into one big set. Since

CUE = EUC, of course we get n{(CuE) = n(EyC) by the

r_————-_w-_isgic of 7=, that is, x+ y=y + x.

It is worth noting, however, that the truth of the com-
mutative law foi + is not equally self-evident if we use
our second definition of addition. Being given two whole
numbers X and y, 1n order to show that x+ y =y + x
according to that definition, we would have to show that ap-
plying S =successively y number of times to x, brings us
to the same result as applying S successively x number of
times to y. While we could check that this indeed turns out
to be the case in individual instances by choosing a few spe-
cial values of x and y, some further argument would be
needed to prove the result in full génerality; (Such an ar-

gument can be provided by using the principle of mathematical
induction, §9.)

The'associative law for + . For all x,y,Z in W we

have (x+ y)+ z=x+ (y+ 2).

Students cften have difficulty in seeing the meaning of
this law because they have been taught to add a column of

three numbers in elementary school. Actually, the possibilit:

©
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of adding together a column of more than two numbers, and get-
ting the same result no matter whether we add from top to bot-
tom or vice-versa, rests upon the asspciative law. It is im-

“portant to realize that addition as originally deflned is a

tuo-place operation -- using either one of cur definitions

of *+; Hence at first we can only add two numbers at a time.
It foilows that if someone gives us three numbers in a certailn
order, say X,¥,Z, the only way we can add them all 1is to
apply the two-place operation + twice. But when the numbers
X,y.2 are given in this specific order there are two differ-
""“ent ways of applying addition twice: One way is to form the
sum X+ Yy and then add this number to 2z getting
(x + y) + z; and the other way is to i1irst form the sum
"y + 2z, and then add x to this numbe> getting x + (y + 2).
“Will the numbers resulting from these two Jifferent ways of
applying + twice. namely, the numbers (x + y) + z and
x+ (y+ z), turn out to be the same -- no matter which num-
b;;s X,¥,Z2 we start with? The assoéiative law gives an
affirmative answer to this question.

The truth of the associative law for + can best be seen
from our first definition of +, though it is not as easy to
gee as in the case of the commutative law. Being given any
three vhole numbers Xx,y,z, we first choose three sets
A, B, C such that n(A) =x, n(B) =y, and n(C) =z --

making sure that-ho tho of the sets A, B, C have an element

in common.
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Under these conditions we will have, by our definit:on
of +, that x + y = n{AuB). Then, because of the wa: in
which A, B. 2nd ¢ were cliosen, and because AUvB is :b-
tained simply by combiﬂing the elements of A and B i1 -0 one

big set, vwe see that the twoc sets AuB and C will zave no

| =

element in common. Hance we can apply our definition of +
a second time ané conclude that (x+ y) + z = n((Auz)uc).
Since the set (AuBIe C 3= Tormed by combining the 2:ilements

of AuB 22 of 7 int

0

o:e big set, we see that i: fact
(AuB)u C is obkairned by combianing ali of the elem ats of
the three sets 1\, B, and ¢ into one big sct.

By entirely similar arguments we can see firs : that
y+ z=n(BuC), aud thea that x+ (y + z) = n(i.uo(Byc)).
Furthermore, Au(BuC) turas out also Lo be the set obtained
by combining all ot ithe elemen%s of vhe three se’s A, }, and
C 1into on2 big sct. In c:her words, we find ou: that
(AuB)u € 1is the same set as (Av (BuC). 9bviscusly, then,

n((Au3)u €) 1is the gome number as 2AMaAu(Bul'), 1i.e.,

The truth of tiie associaiive law can alsc be established
using the secend definiticn of +, Dut as in the case of the
commutative law o very dilferent kiad of argir.aent 1s needed.
(For a proof of the asscciztive 12w from car-ain axioms, sec
§7 teiou.)

The following two lozuws involve noi onliy the operation of

addition, but also the special elements O and 1 of W, and
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the successor operation 8.

Law of the additive identity element. For every x in

W we have x+ O=x and 0+ x = Xx.

We express this fact by saying that O 1is an identity

Full Tt Provided by ERIC.

element for the operation +.

_ Law of addition and successor. For every x in W we

have 8(x) = x + 1.

" This simply exprecses the fact that the addition of 1 ¢to
any whole number brings ﬁé to the next number in the ratural
ordering of W.

The preceding two laws, as well as the commutative and

associative laws above, all have in common a certain simple

Torm. Namely, each law is expressed by means of a single

equation, involving one o” more variables, preceded by a phrase

ERIC

]

such as "For every," or "For all.” A law having this form is
called an equational identity. There are, however, laws of

a more complicated form, such as the following.

Cancellation law for +. If x,y,z are any whole numbers

such that x+ z =y + z, then also x =y.

The name of this law derives from the fact that the sec-

ond equation appearing in it may be obtained irom the firstc

n,n

equation by "cancelling" an occurrence of the letter "z" from

both sides. Of course there is no general logical principle

{
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which allous such cancellation for an :rbitrary 6peration;
the truth of the law for addition rest: upon the definition
of this particular operation.
The cancellation law for + car be expressed in the fol-

lowing logically equivalent form: I: x,y,z are any whole

numbers such that x # y, then'also x+ z £y + z. 1In this
form the cancellation law can bg se :n to be related to the

" following law connecting the opera ion + with the relation <.

The law of addition over ine uality: If x,y,z are .any

whole numbers such that x <y, then also x+ z< y + z.
A similar law connects + sith 5;

Still another law connect’ 1g addition with the relation

£ 1is the following: For any hole numbers x and y we have

x <y if, and only if, there is some whole number z such

that x + z = y. It is wortt noting that this law is used as

a definition of the relation < 1in some treatments 6f the
theory of whole numbers, wh: re the opération + 1s introduced
before a study of the relat .ons < and <. 1In such a pre-
sentation of the subject w may follow this definition of <
by defining x <'y to hoil if, and only if, x and y are

whole numbers for which w: have x <y and x # y.

.t & 0w

We have now examine | several laws (i.e., general state-

{ menté) involving additirn, and we wish to turn to the use of

( some of these laws in establishing particular statements

ERIC

Full Tt Provided by ERIC.
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i

o about addition. Another way of expressing what we are going

to do is to say that we shall use our laws of addition to

compute certain sums -- starting from other sums.
To take a very simple example, consider the following

partially filled-out addition table:

L + Jol1|2]3
o flolzi]2|s3 B
! 1 2| 3| 4 o
2 L 5
3 6

Using only the information contained in the completed part of
the table, together with the commutative law of addition, we
(:) can obtain all of the information needed to complete the

table -- without ever having to go back to a definition of --.

We 1llustrate this by the following theorem, in which the
first hypothesis 1s taken from one of the completed entries
- of the table above, while the conclusion gives the information

needed to provide one of the omitted entries.

Theorem. Using the hypotheses
(i) 1+ 2=3, and

(11) the commutative law for +,
we may obtain the conclusion

2+ 1 =3,
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The'prO(E is exceedingly simple.

1. 2+ 1= .+ 2 ; by logic from hypothesis (i1).
2. 1+42= 3 ; Dby hypothesis (1).
3, 24+ 1-= 3 ;5 by lines 1 and 2 and the logic of =.

InAexplaﬂétion Jf the first line of the proof, we recall that

hypothesis (ii , the commutative 1aw for +, asserts that
x+y=y+x for any whole numbers x and y. Hence in

particular we may take x to.be 2 and y to be 1, get-

ting 2+ 1 :1+ 2 as asserted.

The us¢ of the associative law to obtain certain sums
from others requires us to use proofs of somewhat more inter-
est. Cons .der, for example, the following partially—completed

table of - alues of the addition operation:

+Malzlzluls]l6]lT
1)l 2
2113
Taole A 30 4
" _
6
6117
7118

It turns out that the seven entries provided, together with
the associative law for +, allow us to obtain all the miss-
in , entries of the tabie -- again, without referring to a
dr-finition of + at all. Let us j1lustrate this by obtain-
““jag the sum U4 + 3. The hypotheses (1) below are taken from

she completed part of the table; the conclusion allows us to

£111 in one of the omitted entries.
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Theorem. Using as hypotheses
(1) The particular statements,
l1+1=2,2+1=3,4+1=5,5+1=6, and
6+1=7, and

(11) ‘the associative law for +,

we may infer the conclusion: 4 + 3 =7 .

~

Proof.
1. 2=1+1 ;5 by hypothesis (1) and logic of = .
2. 4+ 2=44+ (141); from line 1 by logic of = .

3. =(4+1) + 1 ; by hypothesis (ii)

L, =5+ 1 ; by hypothesis {i) and logic of =
5. =6 ; by hypothesis (1) and logic of =.
8. 4+ 2=06 ; by lines 2-5 and logic of = . |
7. 3 =2+ 1 ; by hypothesis (1) and logic of = .
8. 443 =4 + (2+1) ; by line 7 an" logic of =

9. = (442) + 1 ; by hypothesis (ii) )
10. =6+ 1 ' ; by line 6 and logic of =
11. =7 ;5 by hypothesis (i) and logic of = .
12. 4 +3 =17 _ ;5 by lines 8-11 and logic of = .

After we have studied certain additional laws involving
multiplication as well as addition, we shall see that proofs

similar to the one above, but involving these other laws, com-

prise the justification of the algorithms usually taught in
l~- —---elementary school for computing sums and products.

,4In'addition to the laws we have studied above one some-

times finds in books the following:
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Closure law for + : If x,y are any elements of W,

then x+ y 1is also in W.
The property of + expressed by this law is part of

what we mean by saying that + is a two-place operation on W.

There are other sets A, subsets of W, such that for

any numbers x,y in A we have x + Yy in A. Such a set

is said to be closed under +. .The set P of positive whole
humbers, i.e., the sét of all whole numbers x such that
X > 0, 1s an example of a set which is closed under +. The

set of all even whole numbers is another example.

§5 (Track B)

1. Exercise. In (i)-(vi) below particular examples of .

elther the commutative law for +, the associative law for +,
or the law of the additive identity element are given. In
each case state which law is bging represented and give an
additional particular example of that law. -

(1) 3+ 0=0+3

(11) (2+0)+ 0 =24+ (0 + 0)
(111) o+ 0 =0
(iv) 108 + (2 + 17) = (2 + 17) + 108
(v) (2+3)+0=24+3 )
(vi) (2+5)+ (3+0) =2+ (5+ (3+0))
2. Class Discussion. At the end of §4, it was stated
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generel pogneocpt of pa ewmpn wholo pumbi=it ewll bo Jeoeribed math-
ematically. Subsequently ".ave the class present an argument
for the fact that the even whole numbers are closed under +.

Now consider the set of all odd whole numbers in the light of

the above-discussion: —Is-this-set closed? - Make up other-sets.———

3, Exercise. If x,y and z are any whole numbers, ex-

plain why x + (y + z) 1is a whoie number. Suppose also that
v is any element of W. Explain why (x+ (y+ z)) + v 1is
a whole number. How far can we "extend" the above sums =--
that is, how many whole numbers (addends) may we sum together
and still be assured that our result will be a whole number?
Explain.

4., Exercise. Suppose X,y and z are any whole numbers.

What supporting statements are needed to Justify gach of the

following: (a) If x=2 then X+ y=Y + 2
(b) If x+y=y+ 2z then x =2
5« Class Discussion. The law of ’the".addiéive.identity
element tells us that O is an additive identity element for
W. Discuss the possibility that there is another 1ldentity
element, say a, for the set of whole numbers under +. Have
the class collaborate on a proof that in fact, if a 1s any

additive identity element then a = 0; explain why, as a re-

sult, we are justified in talking about "the" (unique) addi-

tive identity element for W.

6. Exercise. Let w, X, ¥y, zZ be any four whole numbers

in this order. (a) Using this order, in how many distinct

ERIC . | =
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ways ﬁay these number: be summed? (See the discussion of the
assoclative law in §4.) (b) (w+ (x+ y)) + z and
w + (x+ (y+ 2z)) are two of these distinct ways. Using the
associative law for _4m.repeated1y, in a step by step manner,

show that these expressions denote the same number.

7. Class Discussion. Suppose r, s, t are any whole

_ numbers. What are we talking about when we say that the assoc-
iative law for + 1in W gives meaning to the expression
"+ s+ t" ?

8. Exercise. Closely connected with the two-place

operation of addition, there are infinitely many one-place
operations on W. An example will make this clearer.
Let us denote by S5 the one-place operation such that;

for any whole number x, when 55 operates on x the result-

ing whole number is x + 5.* We use the notation "Ss(x)"
because it gives us the same result as applying the one-place
operator S five times -- that is, ss(x) = S(s(s(8(5(x))))).

Let us call S5 the plus¥five operator. Analogously, we can

define a plus~two, plus-three, or plus~y operator (y being
some whole number).
(a) Compute S5(0), 82(4), SO(S).
r ) (b) Formulate a precise definition of the plus-two operator,

(c) Solve the following equations; that is, determine

what whole number x <must be in order to make the equations

true: (1) (x) =7 (1v) £,(8,(3)) = 8
¥ (11) »3(X) = 4 (v) s,(s,.(x)) = 10
0 (111) s (2) = 6 (v1) s (s)(x)) =16 .
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9. Exercise. As was mentioned in §4, some texts define

the relation < in terms of addition -- that is, x<y 1is
defined to hold if, and only if, there is some whole number
z such that x + z = y. The relation < can then be defined

to hold between two whole numbers x and y 1if, and only if,

both x <y and x # y. Starting from the trichotomy law
for the relation <, and using the above connections between
<V-é;d <, and between < and +, obtain a general statement
about the operation + ;

10. Exercise. In §4 the associative law is used in or-

der to find the sum 4 + 3, an entry in Table A. Review the

procedure involved in computing 4 + 3 and then using the

same hypotheses show that 1 + 3 = 4,

11. Exercise. Suppose that a, b, ¢, d, e are five

distinct objects and that F = (a,b,c,d,e). A two-place oper-
ation on F 1is determired as soon as we have a table indica-
ting which element of F is assigned as the value of the

operation when it acts on any given ordered pair of elements

of- F. Below is a partially completed table for a certain
two-place operation @ on F. Because there are some blank
boxes this table does not, by itself, determine the operation
. (2) Write out a statement of the commutative law for
the operation @. Assuming that this law holds for ®, com-
plete the partially filled table of values for © below.
(b) Describe a kind of symmetry which can be observed

rﬁ) in the completed table. Suppose the entries in the table are
\

L
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rearranged by putting the elements of F in the order
(a,b,c,d,e), instead of the present order (b,d,e,a,c), in
both top and left margins of the table (and then rearranging
the entries in the body of the table accordingly). Will the

resulting table be symmetric? What if we rearrange the top

margin but not the left margin?
(b) Does therz exist an identity element in F with
respect to the operation © ? Explain. ) |
(¢) Compute the elements (b ©® d) ©c and b ©(d © c)
of F. How would you go about establishing the associative
law for the operation © ? How many equations would have to

be verified by computation?

@[lb| d]|] e |J]a|ec
bilc] e a b |d
d bl c {d] a
e d e|bd
a al|c -
c e
§6 (Track A)
Now let us see what sort of pictures -- or geometric
models, to use a more mathematical-sounding phrase -- we can

‘eonstruct to illustrate the concept of addition.
3

Let us begin with gfaphs. Consider the equation y = x + 2,
for example. Its graph consists of all points labeled with

ordered pairs of whole numbers (a,b) which satisfy the
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equation y = x + 2 when the first number, a, 1s substi-
tuted for the letter "x" and the second number, b, is sub-
stituted for the letter "y". For example, the point (1,3)
1s on the graph since 3 =1 + 2 but (3,1) 1is not on the

graph since 1 # 3 + 2, In order to find several points on

the graph we often make a table with two columns headed "x
and "y"; we put several whole numbers in the x-column, and
~ opposite each of these we put a number in the y-column ob-

tained by computation from the ecuation y = x + 2.

x y
o) 2
1 >
2 b
3 5

Thus the last line of this table tells us that the point
(3,5) 1s on the graph. Our Picture of.the graph, derived
from this table, looks as follows: o -
Y-axis |

T y=XxXx+ 2

O = N W & U

+ > X-axis
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We sée that the points of the graph all seem to lie on one
straight 1line. We have placed an érrow at the end of the
line joining the points of the graph to remind ourselves that
only a 1limited portion of the graph is shown in the picture;

the full graph extends indefinitely in the direction of the

©

Aruitoxt provided by Eic:
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It is instructive to plot the graphs of several equa-
tions, say y=x+0, y=x+1, and y=x+ 3, on the

same picture.: Here is the result:

2 ¥ =X+2
AY-axis y=x+1
§F=x+0
5
4
3
2
1
0 +———> X-axis

1 2 3 4 5
We see that the lines Joining the points of these graﬁhs are

parallel.
Other plictures connected with the operation + can be
obtained by plotting graphs of the equations y + 0 = x,

y+l=x, and y+2=x.
A ‘ 2y +0=x
y+1l=x

O+ N W & W
($)) \

«

+

()}

[

]
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fFinally, let us plot the graphs of x+y =0, x+y=1,
X+y=2, and x+ y = 3. Unlike the preceding graphs, these
will not extend indefinifely. In fact, there is only one pair
of whole numbers which satisfies the equation x + y = O,

namely, (0,0), so the graph consists of just one point in

this case. Similarly, the equation x + Yy =2 1is satisfied
by the ordered pairs (0,2), (1,1), and (2,0), and by no
other pair of whole numbers, so the graph contains Just three

points in thié case.

Graphs are not the only kind of pictures we can assoc-
iate with the operation +; Let us conéider the equagion
Yy=2+ X. Ve can get a picture for it by drawing a number
line and a series of arrows: An arrow is to start from each
numbered point, and to end at another point whose number is

obtained from the first number by adding it to 2.°

- -; M N i : & )

0 1 2 3 4 5 6

These arrows suggest a motion of the number line, in which

the line moves 2 units to the right. (We thus get a "motion
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picture” for the equatioh Yy = 2+ x!) If we indicate this
motion by dréwing the initial position above and the final
position below, the result is as follows:

01 2 3 4 5 67
s

N
Ed

P -

) S 1 2 3

5 6 7

N I

~ " ""We see that if we choose a number from the lower line and
substitute it for the letter "x" 1in the equation y = 2 + x,
 the corresponding value of the letter "y" wiil lie on the
upper line directly above the initial number. Of course, sim-
ilar equations, suchas y=1+x or y=5+ x, would
correspond to motions of the number line 1 unit to the right,
or 5 units to the right, respectively.
The geometric ideas we have just considered lead to a

mechanical device known as fheAslide rule. This consists of

| two strips of wood or other material, each imprinted with a
scale of numbers, so arranged that one strip can slide along-
side the other. Slide rules are commerciallj-manufactured
and widely employed, especially by eﬁgineers; these slide
rules generally employ logarithmic scales and are used as an
ald in multiplication. However, by employing scales such as
we use on a number line, we can construct a slide rule which
enables us to find sums in a mechanical manner.

We consider a slide rule consisting of fixed and movable
strips of wood placed alongside each other, on each of which

a number line has been.imprinted. We will picture the fixed
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strip above, the movable strip below.

0O 1 2 3 4 5

— fixed
3

v r e {E-movable

0 1. 2 3 4 5

-~

Now the use of this device to compute any sum- ¢ + x of given
whole numbers ¢ and x, 1is as follows:
(1) We move the O point on the lower scale until it

is opposite the number ¢ on the upper scale. |

(11) We find the point x on the lower scale and read
off the number y on thé upper scale which is opposite it.
This number y is the desired sum ¢ + x.

The fact that we get y = ¢ + x, as claimed in (ii)
above, may be seen from the consideration of the moving num-

ber line which precedes our discussion of the slide rule.

0 1 2 X X+
- o T o ) V- A ; ﬁg
0 2 ¢ '
§7 (Track B)

1. Exercise. On one set of coordinate axes, graph the

following equations: (a) x+y=14
(v) x+2=1y

(1) Determine the set A of all lattice points whose

(— coordinates satisfy équation (a).

-

(11) Let B be the set of all lattice points whose

©
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coordinates satisfy equation (b). Do all of these points
appear on the part of the graph you have pictured? Explain.

(111) Find AQnB.
(iv) How is the answer to (iii) related to your pic-
ture of the graphs of equations (a) and (b)?

2. -Class discussion. A teacher should have practice

- —- - in making up "word problems” for presentation to pupils for
the purpose of illustrating mathematical ideas. Ask the class
fofind word problems which can be represented by equations
(2) and (b) in Exercise 1 above.

A "classical example' of such a problem would involve

" the ages of children. Example: The ages of John and Jane
now add up to 4, and in two years from now John will be as
old as Jane is now; how old is each child? Por another e#-
ample, we may seek to determine the lengths x énd y of two

sticks of unknown length, in a situation where we have on

hand sticks of known length 2 and 4.

Discuss the solutions of these problems in terms of
graphs. ind an additional pair of eéuations whose gréphs
intersect, and "fit" a few word problems tc these graphs.

B 3. Exercise. (i) Let p be the horizontal line seg-

F ment whose endpoints have coordinates (2,1) and (6,1) --
we shall express this by writing p = [(2,1), (6,1)]. Also,
let q Dbe the horizontal line segment [(3,5), (9,5)].

Draw a pair of coordinate axes and sketch the two segments

'p and q. Mark the approxlmate mldp01nts (on the drawing

N
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of these segments) by eye -- without measuring -- and estimate
the coordinates of these midpoints by visual inspection.
(11) On another graph draw the vertical line segments
((1,1), (1,3)] and [((2,2), (2,6)]. Assign letters as names
for these segments, and estimate the coordinates of the mid-

points of each of them, again by visual inspection.

(111) Study the coordinates for the four midpoints sup-
plied ?qm(i) and (ii) above. Cdn you find a relationship
which holds in each case between the coordinates of the mid-
point and the coordinates of the endpoints?

(iv) Using the relationship found in (1ii) above, what
would be the coordinates of the midpoint of the segment
((2,1), (8,3)]? Make a drawing and check your answer.

4. Exercise. The sliding scale of the slide rule béiow

has been moved into position to compute the sum 3+ 4, Put
in the necessary numerals on both scales to enable us to com-
pute 3 + 4, and circle the numeral represented by this sum

on the slide rule.

%_ g - fixed scale
%_ ‘ﬁz - sliding scale

5. Class discussion. Discuss the feasibility of actually

constructing some sort of a slide rule to be used in an ele-
mentary school -- size, material, details. Consider the pos-
8ibility of using a "super slide rule" consisting of three

scales each of which can be moved independently while the other

!
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two are held fixed relative to each other. Such a super
slide rule can be used to illustrate the associative law of
addition: discuss how this can be done.

(x+y) + z

0 x x+y x+ (y+ 2)
- 0 y y+2 |
—

§8 (Track C)

1. A moving game. The following "game" is suggested

as a way to give children more practice with coordinates while
simultaneously enabling them to develop relevant geometric
intuition. The idea is to have them move around a simple fig-
‘ure, such as a square or a triangle, in a patterned way upon

e ———

a system of coordinate axes. For example, the teacher con-

nects four lattice points to form a square, asking the child-

ren to determine the coordinates of its vertices. Next the

children are asked to cdetermine the coordinates of the ver-
tices of the square obtained by "flipping" the given square
over one of its sides, as below. (A cutout cardboard square
of the same size can be placed on the chalkboard and flipped
over to demonstrate what is meant. Of course, the sjuare caa

be flipped over zbout anyqpne of its four sides.

-

__ — 03 i(33) L - L -

©

ERIC

Aruitoxt provided by Eic:




Page 3.36
As the children gain in visualizing geometric motions a
horizontal line can be drawn at some distance from a square,
and the question can be put as to where the square would land
if it vere flipped over this line in a kind of mirror-image

projection. The vertices of the given square can be labeled

A, B, C, D, and then those of the square in the new position

N
"

©
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should be labeled A', B', C', D' in such a way that A' shows

and similarly for each vertex. Finally, when coordinates of
the vertices of the original square are given, the coordin-
ates of the vertices of the square in the new position should

be computed.

1D C r C'} ______ 4D’
' {
{ ‘. ‘0

A B ] B"“‘*‘-“iA'
- +————

§9 (Track A)
Finally, let us turn our attention to the principle of

mathematical induction which we have mentioned several times
without formulating it explicitly. While its precise formu-
lation will seem rather more complex than the general state-
ments we have considered heretofore, there is really a very
simple idea which lies behind it. 1In fact, this principle is
nothing more than a preciée way Sf saying that all whole num-

bers are obtained by starting with O and applying the

\
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successor operation, S, over and over again.

Suppose that A 1is a set whose elements are whole num-
bers, i.e., ASW. We are going t‘o suppose two things about
A: First, that the number 0O 1is an element of A, and sec-
ond, that A 1s closed under the operation &. This means

that whenever & 1is applied to an element of A, the result-

©
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ing number is also in A. Now let us combine these two sup-
positions and see what follows..

A ;"Since‘O hié in;AA -we can épply S to if‘obtaiﬁing 1;
thus 1 1is in A (since A 1is closed under S). Now, ap-
Plylng 8 to 1 we get 2; thus 2 1is in A (since A

1s closed under S). Now, applying & to 2 we get 3;

thus 3 is in A (since S 1is closed under S). Continuing
in this way we see intuitively that every whole number is in
A -- since every such number can be reached by successive
applications of the operation S to 0. The fact that this

conclusion can be drawn from our two assumptions about A is

- precisely the content of the principle of mathematical induc-

tion. Let us now formulate this explicitly.

Principle of mathematical induction. Let A be any set

of whole numbers such that

(1) 0 is in A, and

(11) Whenever a whole number x is in A then also

S(x) 1is in A.

Then every whole number must be in A.
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This principle can be used to prove a great many facts
about the whole number system. For this reason, when mathe-

maticians treat the number system as an axiomatic theory, they

often include the principle of mathematical induction as one
of the axioms. Most people know that the Greek mathematician

Euclid developed geometry as an axiomatic theory, but the rea-

sons which impelled him to do so are applicable to every
branch of mathematics. It was an Italian mathematician,
ViPeano, who first set up an axiomatic theory of whole—numbers,
around 1890. Nowadays mzthematicians treat all parts of math-
ematics from the axiomatic viewpoint.
The desirability of setting up axioms for a theory arises

from the simple recognition that every proof reaches its con-

clusion only after starting from some assumptions. If we go

back and try to prove those assumptions, we must start those
proofs from other assumptions. If we are not to be 1led by
this process into circular reasoning, we must decide to start

somewhere with propositions which we do not try to prove.

These are the axioms of our system. Of course there is nothing
intrinsically umprovable about these axioms: One can always
find a new set of axioms and use them to prove the proposi-
tions taken as axioms in the first system.

Among the axioms used by Peano were the principle of
mathematical induction, and the folloWing two general state-

ments connecting + with O and with S respectively.

ER&C

Aruitoxt provided by Eic:




Page 3.39
Axiom 1. For every x in W we have
x+ 0 =x.
Axiom 2. For every x, y in W we have

x+ S(y) = s(x+ y).

Let us see how the associative law for + can be obtained as

a theorem in this system.

Theorem. Let us assume Axioms 1, 2 and the principle of
mathematical induction. Then for all x, y, .2 in VW we have

(x+y)+z=x+ (y+ 2).

Proof.
l. Let x, y be any whole numbers.
2. Having chosen x and y, 1let us form the set A of
(:) all those whole numbers z (if any) for which it is
true that (x+ y) + z=x+ (y + 2).
5. We claim that O 1s in this set A. For
(x+y)+ 0=x+y, by Axiom 1. B
And x+ (y+0)=x+1y, ﬁecause y+ O0O=y by
Axiom 1. Combining these two equations we get
(x+y)+0=x4+ (y+ O0), which means that 0 1is
in A by definition of A (Step 2, above).
. Now suppose that we choose any number 2z from our

set A. We claim that we must also have S(z) in

A. To see this, let us compute.

£
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(a) (x+y)+z=x+ (y+ z), since z was chosen
from A (Step 4), using the definition of A
(Step 2). |
(b) sS((x+ y)+ 2z) =S(x+(y+ z)), by logic from (a).
(¢) S((x+y)+2)=(x+y)+ S(z), by Axiom 2.
-(The x of Axiom 2 is taken to be x + y, and

the y of Axiom 2 is taken to be 2z.)

(d) ;(x'+ y)-f4sgz) =S(x+ (y+ z)), by logiq,_(b),_gnd (c).

(e) s(x+ (y+ 4,) =x+ 3(y+ z). By Axiom 2.

(f) (x+ y) + 8(z) = x+ S(y + z). By logic, (d) and (e).
(8) s(y+ z) =y + S(z). By Axiom 2.

(h) x+8S(y+2) =x+ (y+ S(z)). By logic and (g).

(1) (x+ y) + s(z) = x+ (y + S(z)). By logic,(f), and (h).

(J) s(z) 1s in the set A. By (1) and the definition

of A (Step 2).
Every whole number is in the set A. For O is in A
(Step 3). and whenever a whole number z is in A we
have also S(z) in A (Step 4). Hence we may apply the
principle of mathamatical 1nductibn to conclude that 35ll
whole numbers are in A.
For every whole number z we have (x+ y) + z=x+ {y+ z}.
Frdm Step 5 by the definition of set A (Step 2).
Since "X, y ware any whole numbers {Step 1) the state-
ment of Step 6 gives the desired conclusion of our

theorem.
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§10 (Track B)
1. Exercise. Assume Axioms 1 and 2 and the principle

of mathematical induction, as given in §9. Using these, prove
that for all x in W we have
X+0=0+x

(a2 special case of the commutative law for +). Hint: Form

the set A consisting of all those numbers x of W -- if
any -- for which we do, in fact, have x+ 0 = 0 + Xx. Then
‘aﬁblinfﬁé ﬁrinéipiérof mathematicai induction té Egié4éet _A ~
by using our assumptions to show (1) O is in A, and (ii)‘
whenever a number y 1s in A, then the number S(y) muét
also be in A.

2. Comment. Whenever the principle of mathematical in-
duction is employed in a proof, the application must begin by
defining a certain set A of whole numbers. A successful
application of the principle will result in the conclusion
that all numbers are in this set, and from this information
we must be able to establish our desired result. It is for
this reason that in Exercise 1 above we chose A to be the
set of those numbers x for which it is true that
X+ 0=0+ x.

In many problems, such as the one just considered, there
is only one reasonable way in which to define the set A ¢teo
which mathematical induction is to be applied. In other cases,
however, several possible definitions suggest themselves --

one or more of these may work, but others may not. A case in
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point is to be found in §9, where the principle of mathematical
1nduétion was employed to prove the associative law of addition.
Let us review the circumstances.
The assoclative law for + states that for all whole num-
bers X, y, 2z we have x+ (y+ 2) = (x+ y) + z. In our

proof we first chose any whole numbers x and y. Then, hav-

ing chosen and fixed these two numbers, we tested each whole
number 2z to see whether ornot x+ (y+ 2) = (x+ y) + 2,
and we formed;the set A of all those numbers 2z for which
the equation'holds. e were able to show by mathematical in-
duction that all whole numbers are in this set A, which es-
tablished the associative law as desired.
Instead of the set A defined above, it is perfectly

natural vo consider a set B defined in a different way, as
follows. Ye first choose any whole numbers y and z. Then,

having chosen and fixed these two numbers, we test each whole

j\

number x &o

A

;ze whether or not x+ (y+ z) = (x+ y) + 2,

and we form the set B of 211 those numbers x for which

this equation holds. Now, if we could use mathematical induc-
tion to show that all whole numbers are in this set B, we
could again conclude that the asscciative law for + 1is true.
But when we try to apply mathematical induction to B, we get
stuck: There is difficulicty; for example, in showing that O
is in B, which must be done in order to apply mathematical
induction.

Still another set, C, 1is a natural one to consider in

i,) trying to prove the associative law for +. (How would we

©
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define C?) But we get stuck in trying to prove 0 is in ¢,
v Just as we did for the case of B.
How can we tell in advance that the set A will work,
while the sets B and ¢ will not? There is no general way,
except trial and error. Thus whenever an application of the

principle of mathematical induction is attempted, one has to

experiment with the definition of the set A to which the
principle will be applied. c S L

3. Exercise. In Exercise 1 above a special case of the

commutative faw for + wes estéblished, using Axioms 1 and
2 and the principle of mathematical induction (as formulated
in §9). Now use those same assumptions to prove the commuta-
tive law for + in full generality. (Hint: of course you

(:) can use the result of Exercise 1 as a part of your proof.)

©
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Chapter 4. Multiplication

" §1 (Track A)

In Chapter 3 we presented two alternative definitions of
addition, and in this chapter we shall deal in the same way

with the operation of multiplication.

First Definition of Multiplication. We define a two-place

operation called multiplication, and symbolized - , on the set

W of all whole numbers. If we operated with - on any given
whole numbers x and y, the resulting number, x - y, 15
called the product of x and y, and is obtained by the formula

X Yy=y+V+ o +7,

\""‘\r”“““"/

X occurrences of y
that is, by repeated addition of the number y a total of x
times. In case x is O we do not add any occurrences of the

number y and we define

‘This definition of multiplication~as repeated addition is,
of course, familiar as the most common method of introducing
multiplication in the elementary schools. The need for a spe-
cial clause in the definition covering the case where the first
factor is O 1is sometimes overlooked; of course, it is unnec-
essary in schools which first study the system of counting num-
bers, 1, 2, 3, ..., where O 1is not present.

However, one may ask why we choose to define O -y as O,
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rather than as y, say, once it is recognized that the maln
clausé of the definition of x ° y does not give a clear and
precise result for the case where x 1is 0. There are several
ways in which this question may be answered,

1. From the viewpoint of apgliggtipng: We know that 1if

x 1is the number of boys in a cléss, gnd if y _is the number
of marbles each boy has, then x—: y .is the total number of
marbles in the class (assuming that qgifhe? teachers nor girls
have any marbles). Now for tﬁq case whgfe 4x is 0 -- an all-
girls' class i- there will,‘ip fact, pé éo marbles, so we do
want to pave O-y=0 for éﬁis app};cétién. |

2. From the point of view of simple laws: As we have

learhed in elementary school, and as.wéfshall see below, the
operation of multiplication satisfies a commutative law. That
is, X -y =Y i i for any whole numbers x and y. Now if y
is any of the counting numbers we easily see that y - 0 = 0.
For instaﬁcg, usiﬁg our dgfiﬁ;tiéﬁﬂgf - above, we compute
1.0=0, 2°0=0+0-= 0; 3 .0=0+0+0=0, etc.
Hence, we must make our definition of.multiplication give a
value of O to the products O -1, O - 2, 0 -+3, etc.,

otherwi§é“the commutative law would fail.

3. Compatibility with other definitions: We shall glve

below an alternative definition of mﬁltiplication which does

not require any special clause for the case where the first

given number is O. The original definition gives the same

value for X - y as the new definition for all whole numbers

I [ ]
/ ; .
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x and y where x # O, so it is natural to design the special
clause of the original definition in such a way that the prod-
ucts O - y also have the same value as under the new defini-
tion. This value is O.

So much for the various reasons which motivate the special

clause of our first definition of multiplication. Before we

can proceed, however, we must still examine the main clause of
our definition. If we employ this to obtain the product 4 - 2,
for example, we find that we must compute the sum 2+ 2 + 2 + 2.
But what does this mean? Since addition was defined to be a
two-place operation we can only add two numbers at a time, yet
here we seem to be adding four numbersl

The preliminary answer to this question is that we must,

indeed, add only two numbers at a time, and so the four given

" numbers cannot be added simultaneously but should be taken in

some order so that we carry out a succession of additions, each
time adding just two numbers. To indicate the order of carrying
out the additions we use parentheses. For example, 6dé order
would be ((2 + 2) +2) +2 . Buf‘this is not the only possibil-
ity. Others are 2+ (2+ (2+ 2)) and (2+ 2) + (2 + 2),
and there are still two other pos%ibilities. How do we know
that these five orders of summation will lead to the same result?
If they do not, which of the resulting sums is meant by the no-
tatilon 2+ 2+ 2 + 2 ?

It turns out that all orders of summation give the sanie

result, 8, and so the notation "2+ 2+ 2 + 2" may be used
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to refer unambiguously to this number. This can be proved by
several applications of the associative law for +. For example,
to show that

((2+2)+2)+2=2+ (2+ (2+ 2))

we first get

() 2+ 2)+2)+2=(2+2)+ (2+ 2)

by taking x tobe 2+ 2, y tobe 2, and z to be 2 1in
the equation )

(x+y)+z=x+ (y+ 2)

which is involved in the associative law. Then we get

(%) (2+2)+ (2+2) =2+ (2+ (2+ 2))

by taking x tobe 2, y tobe 2, and z tobe 2+ 2 in
the equation of the associative law. And finally we combine
equations (*) and (#*) by the logic of equality to get the
- desired result.

Similarly, whenever we add more than two whole numbers in

a given order, repeated use of the associative law will show
that any order for computing the sum by a succession of addi-
tions of two numbers at a time, leads to the same result as any

other such order. (A single proof covering an arbitrary number

of terms to be added can be given, but requires the principle

of mathematical induction.) It is only because of this result
that we are permitted fo use the notation y+ y+ ... +y 1in
our definition of multiplication without providing parentheses

to iIndicate some particular order for carrying out the additions.

Thus this definition of multiplication requires Jjustification

©
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- which is usually taken for granted without mention in the ele-
u mentary schools. (Compare Exercises 6, 7 of
Let us now turn to the alternative definition of multipli-
cation to which we have alluded above. We have already indicated
that our first definition of multiplication resembles the second

definition of addition given in Chapter 3, insofar as the de-_.__

fined operation is expressed in terms of repeated application
of some other operation introduced earlier. It is thus natural
to inquire whether we can now give another definition of multi-
plication which resembles, in form, the first definition of
addition in Chapter 3. In order to define x - y by this
metnod, where x and y are any whole numbers, we would first
choose sets A and B such that n(A).= x and n(B) =y,

(:) l1.e., such that the number of elements in A is x and the
number in B 1is y; we would then combine A and B somehow
to obtain a new set, C; and finally we would count the number
of elements in C and declare that the resulting number, n(c),
1s the value of x - y. This is, 1ndged, whaf we shall do.

But how are we to combine the sets A and B to obtain C2

Taking the union AuB will not do as part of a definition of

multiplication, since that method leads to the operation of addi-
tion (providing A and B are disjoint sets). We need another
method of proceeding from the given sets A and 5 to the new

set, C, and we now turn to a description of this.

Definition. If A and B are any two sets, then the car-

tesian product of A and B, denoted A& X B, 1s another set,

\
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!

whose elements are all of the ordered pairs (x,y) which can
bé formed using any element x of A as its first component
and‘any element y of B as its second component.

The adjective "cartesian" is taken from the name of Des-

cartes, a famous French mathematician and philosopher of the

18th century, whose invention of analytic geometry brought arith-
_____ metic and algebra into a close relation to Euclidean geometry.
Descartes' u§é of ordered pairs of numbers (x,y) as coordin-
ates for poinés in a plane has already been encountered in our
study of graphs (Chapters 2, 3).
As a simple example of the cartesian product of sets, let
A=1{(0, 3, 4} and
B = (2, 3).
Then we have
AxB = {(0,2), (0,3), (3,2), (3,3), (4,2), (4,3)) and
BxA = {(2,0), (2,3), (2,4), (3,0), (3,3), (3,4)) .
Notice that AXB # B xA because the ordered pair (0,2) is an
element of AXB but not of B xA. ft ls true that the ordered
pair (2,0) 4is an element of BxXA, but (2,0) # (0,2). The
fact that the ordered pairs (2,0) and (0,2) are not the same
1s readily perceived by noticing that they are coordinates for

two quite different points with respect to a pair of coordinate

axes.
3
2 (c,l)
. N . .
(., J b é;'., J —
0 1 2 3

©
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i

It is worth noting that even though A xB £B xA 1in this examplé,
we do have n(AxXB) = n(BxA).

Now we are ready for the

Second Definition of Multiplication. We define multipli-

cation to be the two-place operation - on the set W such
that, if x and y are any whole numbers then the product
x -y 1s obtg,'ined by choosing any sets A and B such that

n(A) = x and n(B) =y, and then setting x - y = n(A xB).

We have already had several examples of definitions which
require justification of one or another sort, and the present
C) one is no exception. The kiad of justification needed here is
similar to the one needed in the case of the First Deflnition
of addition. The need arises because if one person chooses sets
A and B such that n(A) = x and n(B) =y, and if another
person chooses different sets C and D such that n(C) = x
and n(D) =y, then the first person-will compute x -y to be
n(A xB) and the second will compute x - y to be n(Cx D) --
but how do Qe know that n(AScB) will be thé same number as

n(C x D)? Clearly we need a theorem.

Theorem. If A, B, C, and D are any sets such that
n(A) = n{C) and n(B) = n(D), then we will also have

n{(A xB) = n(C xD).

ERIC
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A proof of this theorem requires a heavy use of the func-
tion concept (Chapter 1, §4) which we have not developed in
much detail, and so we shall not give such a proof. However,
the reader should see that the Second Definition of Multiplica-

tion would be unsatisfactory if it were not for the fact ex-

- -pressed by this theorem. Incidentally, a comparison of the
statements of this theorem and the corresponding theorem justi-
fying-the definition of addition will show certain differences
of detail which are not essential -- for example, the use of
letters "x" and "y" in the earlier theorem could have been
eliminated, or such use could have been incorporated in the
later theorem. However, there is one important difference:

The requirement that the sets A and B De disjoint is essential

. to the definition of addition and to the theorem Justifying it;
but there is no corresponding requirement in the definition of
multiplication or its Justifying theorem.

As we have observed in the case of addition, the reason
why we say that the two definitions of this chapter, which seem
80 dissimilar, both define the same operation, multiplication,
1s that both definitions lead to the same value of the product
X -y for any whole numbers x and y. In a particular case
this is easy enough to see. For example, aceording to the first

definition we have 3 - 2 =2+ 2+ 2, andso 3 - 2 = 6.

Using the second definiiion we may choose the sets A = (0,3,%)

and B = {2, 3] used above in illustrating the concept of car-

tesian product, and by counting the elements of the set AX B
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to obtain n(AXB) we find x - y = 6 by this definition too.

But this special case does not give much insight into how

¢t

5 + . A
we can Know that the two de

same value. The following considerations may help the reader

to see this.

Let x and y be any whole numbers whatever, x # 0, and
let us compute x - y by the first definition of multiplica-
tion; We get, of course, x - y=y+y+ ... +y, where the
term y occurs x number of times on the right. Now, recall-

ing the first definition of addition, we see that to compute

this sum y+ y+ ... + y we must choose x number of sets

Al, A2’ ceoy Ax’ each having y as the number of its elements,
and no two of the sets having an element in common. We must
then form the union AllJ A2 V... U Ax of all these sets by
combining all of their elements into one big set. Finally, the
number of elements in this union, n(AltJ A, L)..; U Ax)’ will
be the desired sum y+ y+ ... + y, (having x number of
terms), that is we will have x - y = n(AltJ Ayu... L)Ax).

Now how shall we choose our sets Al’ A2, cees Ax? Since
the number of elements in each set must be Yy, we might think
of taking each of these sets to be (1, 2, ..., yl. However,
Wwe cannot really take all of the sets Al’ Ays ..., A_ to be '
the same,. for no two of tﬁé sets may have an element in common.

So let us modify our first idea and take -

P
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= [(1:1): (1:2): ceey (lyy)}

; _ Al
| A, = ((2,1), (2,2), ..., (2,y)]
] t
]
|

f
[ 1 '
? ]

h 3 Y 4 P y 4 '
A, = {{x,1), (x,2), ..., (x,y)1 .

Then clearly each of the sets Al, A2, ooy Ax will have y as

the number of its elements, yet no two of these sets will have

AL Asan Sl 4

an element in common. Thus, our first definition of multiplica-
tion (combined with our first definiticn pf addit;on) gives
;x -y = n(AliJ A, d ...LJAx) .
" But what is this set AU Ay U ...UA_? It consists of
all ordered pairs (p, q) where p may be any of the numbers
1, 2, ..., x and g may_be any of the numbers 1, 2, ..., y.
In other words, if we set
c=1{1,2, ..., x}and D=1(1, 2, ..., y]
then AltJ A2 U ...tJAx is nofhing other than the cartesian
product C>;D. But since clearly. n(C) = =z and n(D) = y, we
see that x - ¥y = n(C xD) by the sec,ond definition of multipli-
cation. In this way we see that the two definitions of multi-
plication lead to the same value for % -y, namely
n(Al UAU ... UAx) or, otherwise written, n(C xD).
In the reasoning above we considered quite arbitrary whole

numbers X and y, except that we assumed x # 0. It will be re-

.called that for the case x = 0 the first definition of multi-

plication has a special form. Wé 1ea§e the reader tc check that
the two definitions of multiplication lead to the same results

in this case also.
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§2 (Track B)

1. Parentneses and ordered pairs. In §1 we mention the

use of parentheses to indicate the order for carrying out a suc-

cession of operations, in this case addition. Because addition

©
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"1s defined as a two-~place 6peration, in principle we can only

add two numbers at any given time. Thus the expression
"2+ 2+ 2+ 2" 1is ambiguous insofar as it does not indicate in
what order the indicated additions are to be performed.

The expression "((2 + 2) + 2) + 2" does indicate precisely
an order for carrying out the indicated additions. The rule is

that we always begin with The operations indicated with the

innermost pairs of parentheses, and continue performing opera-

ERIC

tions "going outward" to evaluate larger and larger portions of
the given expression. Thus, to evaluate ((2 + 2) + 2) + 2 we
would proceed as follows:

First, 2+ 2 [= 4], -

Second, (2+2) + 2 [= 4 + 2] [= 6],

Last, ((2¢2) +2) + 2 [= (&+2) + 2] [= 6+2] (= 8] .

On the other hand, to evaluate (2 + 2) + (2 + 2) tne procedure

would be:
First, 2+ 2 (= 4] -- this combination appears
twice in the given
expression --

A}

Second, (2+2) + (2+2) [= &+4] [= 8] .
In this particular case both of the numbers ((2 + 2) + 2) + 2

and (2+ 2) + (2 + 2) turn out to be 8 (as indicated in the
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text of +1 ). However, in general the way in which parentheses
are distributed to indicate the order of performing operations
will affect the numerical value of the result of the computation.
(See Exercise 2, below.)

If parentheses are put into an expression in a haphazard
| manner, the result may be meaningless. For example, the expres-

_sion _"(2.4+)(3_+ 5)" _is meaningless since the first pair of

of numbers to be added. Similarly, the expression (2 + (5+) 4)
is meaningless. |

A completely different use of parentheses is involved in
forming the name of an ordered pair. If the names of two ob-
jects are separated by a comma, we put parentheses around the
resulting expression to form a name of the ordered pair having
these objects as its first and second elements respectively.
This use of parentheses has nothing to do with the order of per-

forming operations.

2. Exercise. (a) The expression "1 + 2 - 5" is ambig-

uous since there is no indication as to the order for performing

the indicated operations. Insert parentheses in this expression

to indicate one order for carrying out these operations, and

then (starting over) insert parentheses to indicate another order.
N Evaluate the expression in each case.

(b) In the ambiguous expression "2+ 2 - 2+ 2", parentheses

can be introduced so as to indicate five different orders for

performing the indicated operations. If we carry out these five
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methods of evaluating the expression, how many different numer-

ical values do we get?

3. Exercise. In §1 there is a discussion of the use of

the associative law of addition in order to show that

((2+2)+2)+2=2+ (2+ (2+ 2)). (a) Snow this equation to

be true using only the commutative law for addition and logical

laws.
(b) Note that the associative law can be replaced by the com-
mutative law in this way only in very special cases. Give two

more special cases where this is possible.

4. Classroom discussion. Review the line marked (*) in

the informal proof, using the associative law of addition, of

the equation ((2+ 2) + 2) + 2 =2+ (2 + (2+ 2)); that is,

1"__ 1" n__n nmn_n

clarify the use of the letters X, y and 'z . Have the

class glve additional particular examples of the associative
law of addition where sums are substituted for the variables

X, ¥y and z.

5. Exercise. One of the definitions of multiplication

(the first one given in §1 ) involves repeated addition; simi-
larly one of the definitions of addition (the second one given

in Chapter 3) makes use of repeated applications of the succes-

sor operation. (a) Review these two definitions and then com-
bine them to obtain”a definition of multiplication directly in
] terms of repeated use of the successor operation.

t(*/ (b) Using this new definition of multiplication compute the

JRT product 3 - 2.
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6. Exercise. (a) For what sets A 1is it true that

AXA =
(b) For what sets B 1is 1t true that n(BxB) = n(B) ?

"T. Exercise. Let A be the set of whole numbers less

than 5. .(a) List the elements of AxA and, by counting,

compute n(A xA).

(b) Let B be the subset of AXA consisting of all those
ordered pairs of Aa(A whose first and second members are the
Same. List the elements of B,

(c) Do the same for the subset (¢ of A XA consisting of
those ordered pairs of A XA whose second members are equal to
twice the value of the first member.

\ (d) Draw pictures of B and C on one graph.

8. Exercise. Recall that the set-theoretic definition of

addition (in terms of the union of sets, Chapter 3) required a
Justifying theorem. So does the set-theoretic definition of
multiplication (in terms of the cartesian product of sets, §1).

Compare the statements of'these two theorems. Reformulate these

two theorems, eliminating the use of the letters X" and "y

in the former and incorporating them in the latter.

P I
-~
*

9. Exercise. At the conclusion of §1 the two definitions

for finding the product x - Y were shown to be equivalent for
all cases except where x 1is zero. Examine this case by using

both definitions of multiplication to compute 0 - y.

ER&C

Aruitoxt provided by Eic:
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A= [(1,1): (1:2): (1:3)} ’
B = [(2:1): (292)) (2’3)} ’

2Y (3 7))
handl B

\A’” 377 7 b g

10. Exercise. Suppose

a
|
e~
~~
N

&
\/

v
3
1

3

(u:l)’ (432): (h:B)} .
List the elements of sets E and F such that

--EXF=AUBuyUCU D.

1l1. Exercise. Describe in‘words the elements of the set

WxW, where W 1is the s¢t of all whole numbers. Can a com-

plete 1list of these elements be put down?

§3 (Track C)
1. Repeated Addition. A number line is helpful for teach-

ing multiplication in the early grades, using the repeated addi-
tion approach. For example the product x - y can be obtained
by x number of jumps (beginning at 0), each jump being vy
units in length. A number line painted on the floor would be
most useful.for the physical jumping involved in compuéing prod-
ucts by the above method. Analogously, the standard game of
Glant Steps could be reformulated to involve products. ["Johnny,
you may take U4 jumps each of 2 units length." Johnny answers
"Teacher, may I take 8 steps?" "Yes, you may."] It is also

possible to use the slide rule described in Chapter 3, moving

one stick x number of times to arrive at the point x - y on

the fixed part.
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2. Cartesian Products. To use this approach to multipli-

cation one need not, of course, mention the name "Cartesian Prod-
uct.” For example, the product 4 - 2 can be thought of as the
number of intersections of 4 vertical columns and 2 horizontal

rows as pictured below.
. l

The geo-boards mentioned in Chapter 2, §12 are useful for con:.
sidering such rectangular arrays of points: In each problem

the nails under consideration may be surrounded by a rubber band.
For the later grades, Cartesian Products can be introduced with-
out using numbers. For example, if a boy has 3 different col-
ored shirts he can wear, and 2 different colored pants, then the
cartesian product of his set of pants with his set of shirts

gives the set of the six possible combinations he can wear.

§4 (Track 4)

Now that we have seen two alternative definitions for the
operation of multiplication, -, on the set W of all whole
numbers, let us consider some of the laws, or general statements,
which hoid about it. Two very basic ones have already been en-

countered in connection with addition.

Commutative Law for Multiplication: If x,y are any whole

numbers then x « y =y « X.

Among the particular cases included in this law, for example,
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s 3 -5=5 .3, If we seek to yerify this by using the first
definition of multiplication, we see that 3 . 5=5+ 5+ 5 and
5+3=3+3+3+3+ 3, so that what must be shown 1s that
5+5+5=3+34+34+ 34 3. By carrying out the indicated
8ums we can find that this is, indeed, the case; But this method

of procedure is not very helpful in seeing that other particu-
lar instances of the commutative law will hold. For instance,
“éo verify that 2 . 4 = 4 . 2 we must compute the sums &4 + 4
and 2 + 2+ 2+ 2 and show that they are the same -- a question
which seems to be not very closely connected with our earlier
computation of the sums 5+ 5+ 5 and 5+3+3+ 3+ 3,
By contrast, let us seek to verify the fact that
53+-5=5 * 5 using the second definition of multiplication.
To compute 3 . 5 we first find two sets, say M and J, such
that n(M) =3 and n(J) = 5, and then we will have
3+ 5=n(MxJ). On the other hand, to compute 5 . 3 we must
form the cartesian product JxM (since the number of elements
in J 1s 5 and the number in M 1s 3), and then
53 =n(JxM). Will we find n(MxJ) = n(J xM), as claimed
in this case by the commutative law of multiplication? Let us see.
- A convenient set to use for M is {1, 2, 3}, since cer-

tainly n(M) =3 in this case! Similarly, we may choose

J = [i,2,3,4,5] since, as we recall, the definition of multipli-

cation does not require M ana J to be disjoint. Then the ele-
ments of M;<J will be all ghe ordered pairs (1,1), (1,2),
(1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), (2,5), (3,1),

Q
I

§«

ERI

Aruitoxt provided by Eic: \
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(3,2), (3,3), (3,4), and (3,5). On the other hand, the elements
of JxM are the ordered pairs (1,1), (1,2), (1,3), (2,1),

N

(2" )’ (-2,3)’ (3,1)’ (3,2)’ (3,3)’ (""i',l), (a’?), (ii.’B)’ (5’1)’
(5,2), and (5,3). Notice that we can conclude that these two

sets, MxJ and JxM, have the same number of elements --

©

! EC

Aruitoxt provided by Eic:

without counting either set! The reason is that the ordered

pairs which make up JxM are simply those of MxJ "turned
around” so that the first element of an ordered pair of Mx J
becomes the second element of a certain ordered pair of JxM
and vice-versa. Thus n(MXJ) =n(JxM), andso 3 . 5=5 . 3,
The phenomenon encountered in éhis example ;s quite general.

If A and B are any sets whatever, we have AxB # BXA -- un-

less A and B are the same set. However, in every case we have

n(AXB) = n(BxA), because the ordered pairs which make up

B A are simply those of AXB "turned around”. (This can be
seen by reviewing the definition of cartesian product, §1.)

This fact leads at once to the commutative law of multiplication,
in full generality. PFor if x,y are ény two whole numbers,

and if we choose sets A and B such that n(A) = x and n(B) =y,
then the second definition of multiplication tells us that

X - y=n(AxB) and that y * x = n(BXA). Since, as we have
Just seen, n(AXB) = n(BXA) by the "turned around" principle,
we conclude by the logic of equaiity that x ~y=y « x -- as

claimed in the.commutative law.

The Assoclative Law for Multiplication. If x,y,z are any

whole numbers then we have (x « y) « 2 = x « {y -2).
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The left side, (x - y) * z, represents the number obtained

by first forming the product x - y, and then multiplying this

o

y 2. The right side, x - (y - z), represents the number cb-
tailned by first forming the procd.ct y - z, and then multiplying

x by it. (Compare item 1, §3.) The associative law asserts

that these two processes lead to the same number -- no matter

which whole numbers x,y,z we take. Let us try to see why this

law 1s true, using our first definition of multiplication.

Consider,.for example, the case where x is 2, y is 3,
and z is 4, and let us look at the term on the right side of
the equation in the associative law, 2 - (3 - 4). According
to our first definition of multiplication 3 - 4 = (4 + 4 + 4),
and hence 2 - (3 - 4), whichis 2 - (4 + 4 + 4), must be
(U +4+4)+ (+ 4+ 4). Inthis last expression there are
3 occurrences of the numeral #4" within the first parentheses,
and 3 within the second, so that altogether we are adding 2 - 3

occurrences of 4. Because of the associative law of éddition,

we can (as indicated in Chapter 3, §4) express this sum as

b+ 4+ 44+ 4+ 4+ 4 without reference to any particular pat-
tern of parenthesizing the five addition operations to be per-
formed. Since we are adding 2 - 3 accurrences of 4, the

number we get is (2 - 3) . 4, according to the definition of

‘multiplication. Since we started with 2 - (3 - 4), we have the

desired equality: (2 - 3) - 4 =2« (3 - 4).

These observations are quite general. If x,y,z are any

whole numbers -- neither x nor y being O -- then y . z is a
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sum of y occurrences of z. Hence x - (y - z) is a sum of

X expressions, each a sum of y occurrences of 2. Thus the
total number of occurrences of 2z which must be added to get
x*(y-2) is y+y+ ... +y , where here we have x occur-

rences of y. In other words, (applying the definition of mul-

- tiplication once more), we must add together x - y occurrences
~of z toget x- (y - z). But adding x - y occurrences of
z gives (x + y) - 2z, by definition of multiplication. Hence
(x -y) -z=x- (y - 2). as claimed.
We must still consider the case where one of the numbers
"x or y is O. Supposz2, for example, fhat x 1s O. Then
x+(y-2z) 1s 0+ (y * z), and this is O by the special
clause of the first zefinition of multiplication (which asserts

that O multiplied by any whole number gives a product which is

0). Thus x - (y - 2) =0. But x - y=0 -y 1in the case

wvhere x is O, and O - y = 0 by the special clause, so that

- X -.y=0. It follows that (x -y) - z 1is O - z. But

O - z =0, by another use of the special clause, so

(x - y) - z=0 by the logic of equality. Since we have shown

; both x * (y - 2) =0 and (x - y) - 2z =0, we finally have

x +(y-2z)=(x-y) - 2z for the case where x is O, as claimed.
The case where ¥y is O can be handled similarly; we leave de-

tails to the reader.

‘ - -The law of multiolicative identity: For any whole number

X wWe have x °* 1 = Xx.
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The truth of this law is not hard to see using either of
our definitions of multiplication. It will be recalled that the
additive identity element is O, since when O 4s added to any
given number the result is that same number. Our new law shows

that the multiplicative identity element is 1, since when any

given number is multiplied by 1 the result is that same number.

Of course the number O plays a special role in the theory
of muléiplication, too, as we éee by the special ciause of the first
definition: For any whole number x we have O - x = 0 (and
hence also x - 0 =0, since x -+ 0=0 .« x by the commutative
law for multiplicatibn.) There is no similar phenomenon in the
theory of addition; that is, there is no whole number 2z such
that for every number x we have x + 2z = z.

Because of this special role of O in the theory of multi-
plication, we can not have a cancellation law for multiplication
of the same kind as we encountered in studying addition (Chap-
ter 3, §4). In other words, it is possible to have whole num-
bers x, ¥y, and z such that x - z =y - z, and yet y £ z.

For example, 2 - 0 =3 - 0 (since 2°0=0 and 3 - 0 = 0),

but of course 2 # 3. Indeed, if x and y are any two different

whole numbers we will have x - O =y - O but x # y.

Although the cancellation law does not hold in full gener-
ality for multiplication, we have a modified form of it.
Limited Cancellation Law for Multiplication. If x, y, z

are any whole numbers such that « - z =y - 2z, and if z £ 0,

then x = y.
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How can we see that this general statement is true? Sup-
pose that x,y,z are whole numbers such that x - z = y - 2
and z £ 0. Let us assume, temporarily, that = # Y. Then one
of the numbers x and y must be smaller than the other -- say

X < y. From the equation x - z = Y ° 2 we can obtain another

by replacing the left side by a sum of x oeccurrences of Z,

and the right side by a sum of y occurrences of z. Now apply

the cancellation law for addition x times, successively, to
this equation.” On the left side we will be left with O, of
course, but since x < y .we see that on the right side we will
still have a sum of one or more occurrences of z. But since
z £ 0, by hypothesis, we cannot have O equal to a sum of one
Or more occurrences of z. We have thus arrived at a contradic-

tion. This contradiction arises from our (temporary) assumption

that x # y, and thus shows that after all Wwe cannot have x # y.
That is, we must Have X =Yy 1if we start with the hypotheses
that x - 2=y .2z and z #£ 0. This is the desired limited
cancellation law.

Closure Law for Multiplication: If x and y are any two

whole numbers, then the product x * ¥ 1is also a whole number.

As we have indicated in the case of the corresponding law
for addition, this fact about multiplication is part of what we
mean by saying that multiplication is an operation on the set W
of all whole numbers. Hence it follows immediately from either

of our two definitions of multiplication.

We also express this fact by saying that the set W 1is
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closed under multiplication. Various sudbsets of W are also
closed under multiplication, e.g., the set cf all odd whole num-
bers, or the set of all positive whole numbers {i.e., all whole
numbers other than 0).

We now turn to a very important law which connects multipli-

cation with addition.

The distributive law of multiplication over addition. For

any whole numbers x,y,z we have X - Lg + 2z) = (x - X) + (x - 2z).

The left side, x « (y + z), 1is the number obtained by
first adding y to z, and then multiplying x by this sum.
The right side, (x - y) + (x + 2) 1is obtained by first forming
the two products x -y, and x - z, and finally adding these
two products togethepy. The distributive law asserts that these
two processes of computation always lead to the same result --
no matter what the numbers x, y, and z may be. How do we see
that it is true? : e -

If x is not O, then the first definition of multiplica-

tion tells us that x * (y + z) 1is the sum

(y+2)+ (y+ 2z)+ ... + (y+ z), where we have added a total
of x occurrences of the term y + z. Using the commutative

and associative laws for addition, we can separate out the y's

and the z's, getting x - (y+2z) = (y+ y + ... +y) +

(z+ z+ ... + z), where on the right we are first adding x
occurrences of y aﬁd then x occurrences of z. But applying
our definition of multiplication again (twice), we see that the

sum of x occurrences of y is x -y and the sum of x
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occurrences of z. is x - z. Hence, we get ¢

x - - (y+2z)=(x-3)+ (x - 2), the desired distributive law.

Let us close this section by citing laws which connect mul-
fibiigafioﬁ with tﬁé relation less than, <, and the successor

_operation_S.

If x, y, Z are any whole »mbers such that x < y and

2 £#0, then x - z<y - 2z,

For all whole numbers x, y we have x - S(y) = (x - ¥) + x.

§5 (Track B)
1. Exercise. Using the first (i.e., the repeated addition)

definition of multiplication, show in detail that the associative
‘law of multiplication, (x - y) - z=x -+ (y * 2), 1is also valid
for the case y = 0. (Compare the case z = O treated in detail

in §4.)

2. Exercise. Using the second (cartesian product) defi-i-

tion of multiplication, give a convincing argument for the valid-

ity of the multiplicative identity law.

3. Exercise. All sorts of operations on quite arbitrary

sets may satisy some of the laws which we have seen hold for the

operations - and + on the set W. Assume that © and b_j'l

are two-place operations on some set H. Express formally, using
"n_n

the letters "x", "y" and "z", the general statements that:

(a) the set H 1is closed under ©, (b) the operation © 1is
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associative, (c) the operation | is commutative, and

AN

r (d) © 1is distributive over .

3., Exercise. Let J = {1,3] and let X be the set whose

elements are all of the subsets of J. Thus K has exactly 4

elements. (a) List the 4 elements of K and label them

a, b, ¢, and 4.

Next, let us define the two-place operations (®P and &
on the set K to be the operations of union and intersection,
respectively; this makes sense, since the elements of K are
sets. (b) Make a table of the 16 elementary facts about the
operation @ and another such table for the operation (&. Use
the letters a, b, ¢, d f:r entries in the table. (c) Are
either or both of the ope.ations @ and & commutative?

(d) Is either operation distributive over the other?

g Saiitininubt i Al

(e) Do there exist identity elements for the operations @ and ® ?
- (f) Do either of the operations @ and ® satisfy a can-

1 cellation law? | | -
(Justify your answers to (c), (d), (e)»and (f) by referring to

| the tables prepared in answer to (b).)

5. Exercise. Consider the following array: 3 41 12
The numbers in the boxes are first multiplied 121}
horizontally and vertically and the resulting 6 4 24

numbers are placed In the margins at the righ* and at the bottom.

~—- - These marginal numbers are then multiplied to give the same final

product, entered in the box at the lover right, which for the
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above array is 24. (a) Fill in the boxes to give another ex-
ample and work out the products. Express the fact that the prod-
uct of the numbers in the right margin has the same value as the
product in the bottom margin by means of a general law, using

four variables. Carefully explain why this general law is true

~

by-using the ‘commutative and -associative laws for multiplication.

(b} Enlarge the array, horizontally with more rows and then
vertically with more columns. Do the marginal products still

"work"? Why?

6. Classroom Discussion. Discuss the cartesian product

of any finite set with the empty set @4 and relate this to the

second definition of multiplication.

7. Individual project. 1In Chapter 3, §9, we considered an

axiomatic approach to the theory of whole numbers. The axioms
mentioned there were the Principle of Mathematical Induction
(page 3.37), and Axioms 1 and 2 involving addition (pag? 3.39).
Let us now enlarge this system by adding two axioms involving
multip.ication, as follows.

Axiom 3. For every X in W we havel Xx . 0=0.

Axiom 4. For every x,y in W we have

x - S(y) = (x - y) + x.
In the enlarged axiom system we will of course have the

associative law for addition (proved on pp. 3.39 - 3.40), and

---the commutative law for addition (mentioned on p. 3.43). Using

these, together with the new Axioms 3 and 4, prove:
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(a) The distributive law for multiplication over addition,
(b) the associative law for multiplication, and

(c) the commutative law for multiplication.

8. Exercise. (a) Formulate a general statement express-

TR TN Y T Ty S .

B e iaadu it

tive over multiplication.

(b) Give an example to show that this law is false.

g. Exercise. Give an example of a subset of W which is

not closed under multiplication.

10. Exercise. Using the first (i.e., the repeated addi-

tion) definition of multiplication, the distributive law for
multiplication, and the fact that 1 + 1 + 1 = 3, show that
3 5=5-3.

11. Exercise. 1In discussirng the distributive law for -

over +, 1in §4, it was stated that for any whole numbers

y and 2z,
(vy+2z)+(y+2)+..+(y+2) = (y+ y+..+ ) +(z2+ 2 +...4 2),
where in each case the 3 dots represent the same number of
omitted terms. Consider the case of this law in which the term
(y + 2) occurs only twice on the left, and prove this case

using the commutative and associative laws of addition.

12. Exercise. At the end of §4 are given two laws connect-
ing < with < and with S. PFind other true laws connecting

- with <, <, and with S.

Full Tt Provided by ERIC.

ERIC
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§6 (Track C)

1. Learning Multiplication Facts. See exercise 5 of §5

for a practical method of teaching the elementary multiplicatlion
facts, which may also be used as a way of demonstrating the com-

mutative and associative laws of multiplication. Such tables

- ean be introduced at first as a "game". Later they can be used
to "check" computation of products of 4 whole numbers. Note
that the associative law for multiplication is itself a method

for "checking" products of 3 whole numbers.

2. The Associative law of Multiplication can be visually

grasped by making (or ordering from the school district, if
lucky) a rectangular box made up of unit cubes, or blocks, which

can be fitted together.

For example, to show (3 - 4) - 5=3 - (4 - 5) 3
use a model as in figure (a) where
4

we have 3 * U Dblocks in each ver- Y
tical slab and there are 5 such , 4
vertical slabs. This illustrates . Z ; 5

AR\
the left side of the above equation. ,//Z/Z),f,/ \
For the right side the box can be (figure a)
looked at as in figure (b) where =
there are 4 - 5 boxes in each ver- -

5 & n

tical slice and 3 such slices. Of s

_course, no matter how we slice it,

we have the same number of iittle

blocks in the big box.
\ . & (figure b)
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3. The distributive law for multiplication over addition.

This law can also be displayed visually in a way which makes it
1ntuiéive1y simple t¢c grasp.. In contrast to the associative
law discussed in item 2 above, only two-dimensional squares are

needed instead of three-dimensional blocks.

. _______ Por example, to illustrate that 4 - (2 +3) = (4 - 2) + (4-3),

we consider the U4 x5 array of squares

2 4+3 —
which contains 4 - (2 + 3) squares. By cutting down a vertical

line and separating the two pieces we get

ﬂ-

e —r 2
— 22— —3 ~

The split array has (4 + 2)+ (4 - 3) squares.-in it. Since
the number of squares was not changed Ly cutting and separating
the original array, we see that &4 - (2 +.3) 1is the same as

(4 - 2) + (4 - 3). Notice that it is not necessary to evaluate
the total number of squafes as 20 in order to come to the con-

clusion that 4 - (2 + 3) = (4 - 2) + (4 - 3) !

ERIC

Full Tt Provided by ERIC.
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4, The use of laws in computation. The laws of addition

and multiplication should be learned by elementary sc¢hool students---

preferably by discovery rather than by being told what the laws
are. Motivation to learn the laws, a reinforcement of the learn-

ing process, should be brought about by indicating how the laws

ﬂay—bewuséb to simplify computations.--For -example, 1f one 'is

asked to compute (13 ¢ 5) - 4 and goes at it in a straightfor-
ward way, one first gets 15 - 5\= 65 and then 65 * 4 = 260;
neither of theée multiplications can be done "in the head” by
beginning students. However, if one converts the given

(13 - 5) - 4 into 13 ¢ (5 - 4) by the associative law for
multiplication, then the products which must be calculated are
5+« 4 =20 and 13 - 20 = 260, both of which are much easier.
Make up other examples of this kind, in which a combination of
commutative and associative laws can be used to simplify compu-
tations.

Especially useful is the distributive law. For instance,

8 - 13 can be written as 8 - (10 + 3) which, by the distribu-

tive law is the same as (8 - 10) + (8 - 3) or 80 + 24, which
is 104. Of course, it is just such a use of the distributive
law which underlies the algorithm for multiplying with 2-place
numerals, as we shall see in Chapter 5, Notice, however, that
the distributive law can be used in many different ways to eval-

uate a given product such as 8 - 13. For example,

' 8-13=8-(8+5)=(8":8)+ (8-5) =64+ 40 =104
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§7 (Track A)
In this section we shall investigate some of the geometric

plctures connected with the operation of multiplication.

Consider first the commutative law for multiplication. 1In
verifying the special case of this law, 3 - 5=5 -+ 3, we con-
—éidered the sets M-=-{152,3}--and -F=-1;2,3;4,5};,—we formed ———
the two cartesian product sets MXJ and JXM, and finally we
saw that these two product sets,.while not the same, have the
same number of elements. This last fact can be seen pictorially
by constructing a palr of coordinate axes in a geometric plane,
and considering the lattice points represented by the ordered
pairs of M xJ and of JXM.

In fact, siace the elements of MxJ are all those ordered
pairs (x,y) obtained by taking x to be any of the numbers
1,2,3 and y to be any of 1,2,3,4,5, we see that the points
of the plane represented by these elements form a rectangular

array consisting of 3 columns and 5 rows. (See Figure 1.)
) A _ _

& ] L] 1]

[l | TN R — RN )
1a

» ¥ ¢ L

i D— F' \

12 3 4 57

Figure 1.
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On the other hand, when we mark the points corresponding to the
elements of JXM, as in Figure 2, we find a rectangular array

consisting of 5 columns and 3 rows.

A
5 $
3 4 4
3 T - . . ’ .
2 T L4 ° - ° pu
3 1 - L4 [ 4 - L4 -
—— — — >
o 1 2 3 4 57
Figure 2.

It is geometrically evident that the arrays in Figur;s 1l and 2
have the same number of points, for either one of these arrays
can be obtained from the other by a process of rotating and
sliding.

| It is useful to note that the elements of any cartesian
product of sets, A X B, can be represented by a recténgular
array, whether or not the elements of the sets A and B are num-
bers. For example, if A = {George Washington, Abraham Lincoln},
and 1if B = [New York, Los Angeles, Kansas City, Chicago]}, and
if we wish to represent A (B, we select 2 points on a hori-
zontal axis which we label "George Washington" and "Abrahan
Lincoln", we seléct 4 points on a vertical axis which we label
"New York, "Los Angeles", "Kansas City", and "Chicago", and then
each of the 8 lattice points determined by these 6 selected points

will correspond to one of the ordered pairs making up the carte-

sian product A % B. These lattice points form a rectangular
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array of 2 columns and 4 rows. In Figure 3

4

g

N.Y.' d‘ hd ¢
Lvo L4 e
K.C. -* A4 @
Chi. <+ - [}
G,W.  A.L.

Figure 3.
we have circled the point (Abraham Lincoln, Kansas City).
Using the same sets A and B, we would picture the cartesian
product B %X A by labelling 4 selected points on the horizontal
axis with the elements of' B, and 2 selected points on the ver-
tical axis with the elements of A. The picture of B X A then
consists of a rectangular array having 4 columns and 2 rows.
This way of picturing cartesian products makes clear that
for any finite sets C ana D we have n(C ¥ D) =n(D XC), a
principle which underlies the commutative law of multiblication.
But these pictures of cartesian products can also help us to see
the truth of another proposition about sets, which leads to an
alternative method of understanding the distributive law of mul-

tiplication over addition.

Proposition. If A,B,C are any sets such that B n C = ¢

(1.e., such that B and C_are disjoint), then also A X B and

A X C are disjoint, and we have

AxXx(Buc)=(aAxB)u (AxXC).

ERIC
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f DI jac
| \-wi:—-j Figure 4.

_.m_____LetnA,ijfand-C—be-given«sets,-wB—and~C-disjoint. -Following —— ——
g the pattern outlined above, we picture the eiements of A as

. - . points on a horizontal axis, and\the elements of B and of C

as points on a vertical axis; since B and C are disjoint, we

may place all the points corresponding to elements of B above
the_points corresponding to elements of C. Now when we mark

the lattice points determined by the selected points on the axes,

we see that the full rectangular array, which represents the

Rilated

elements of A x(B y C), breaks naturally into two disjoint
subsets -- the lattice points representing AXx B above, and
the lattice points representing A X C below. This illustrates
the two parts of the conclusion of our Proposition: A X B and
AXC are disjoint, and Ax(Bu C) = (AXx B)vu (A x (,:)

Now using the Proposition we have Jjust illustrated, we may
obtain a proof of the distributive law of multiplication over
addition as follows:

- .

.};' Let x, y, z be any whole numbers.

2. Choose disjoint set B and C =0 that n(B) =y

and n(C) = z.

3. y+ z=n(B UuC); by line 2 and the first definition

of addition (Chapter 3, §1).
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4, Choose any set A such that n(A) = x.
n(A X (B ucC)); by lines 3, 4 and

5. x « (y + 2)
the second definition of multiplication (§1).
6. A X(BucC)=(AxB)u (A x d); by Proposition above.
7. x* (y+ 2z) =n((AxB)u (A xC)); by lines 5, 6

e

énd_logicmofmequality.~ — -
8. (AXB) and (A xC) are disjoint; by Proposition above,
.. since B and C are disjoint by line 2.
9. nAx B) =x -y and n(Ax C) =x * z; by lines
2, 4 and second definition of multiplication.
10. n((AxB) U (AxC)) =(x-y)+ (x - 2z); by lines
8, 9 and first definition of addition.
11. x - (y+ z) =(x - y)+ (x - 2); by lines 7, 10
and logic of equality.
Since x, y, z are any whole numbers (line 1), we see that

line 11 establishes the distributive law.

Let us now look at the pictures of graphs of equations in-

volving the operation of multiplicatioh. If we first look at the

graphs of the equations y=1-x, y=2+*Xx, y=3 * X,
we see that each graph lies along a straight line, and that the
lines corresponding to the three equations get successively
steeper. (See Figure 5.) On the other hand, the graphs of the

equations x=1.y, x=2 -y, x=3 °y 1lie along lines

which get successively less steep. (See Figure 6.)
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N
\/=3 « X N
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9+
3+ : 4
= l OX
".» Y -+
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I 1 !
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Figure 5. Figure 6.
Finally, the graphs of each of the equations x - y =1,

X -y=2, x°*y=4, x . y=6 have only a finite number of
lattice points, and those that contain mo.e than 2 points do not

lie on a single straight line. (See Figure 7.)

\\ 4
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Aﬁother type of geometric representation for equations, as
we have seen in Chapter 3, §6, jnvolves motions of the number
line. For example, given the multiplicative equation ¥y = 2 ° X.
we consider a whole number line and from each point with coordin-

ate x on/this 1ine we draw an arrow pointing to the point 2 * X.

o 1 2 3 4 5 6 7 8 9 10 )
Figure 8.
The pattern of ‘these arrows suggests a motion of this line -- one

in which the endpoint, O, does not move at all, and in which
the points further from 0 move further during the motion.
(Figure 8.) If we indicate the position of the points before

the motion on one number line, and the position of the same
points at the end of the motion on another line right below the
first one, the picture we get (Figure 9) suggests that the motion
1s a uniform stretching of the line. In this stretching, each

o 1 2 3 4 5 6 T 8 -

- i = f f —>
N N \“:“~s
- Sy CIELEESELES e S
1 2 3 4
Figure 9.

point mcves to the right a distance equal to its original.dis-
tance from the O point. Similarly, the eguation ¥ _ 3 . 0x
can be pictured as a stretching motion of the number line in
which each point moves tw;ce as far to the right as 1ts original

distance from the O pcint.

- W
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!

Figure 9 has another interpretation. Instead of the two
pictured lines being thought of as the before-and-after pictures
of a single line in motion, we can simply consider what we ac=
tually see -- two half lines side by side. On each we have laid

off a number line, but the unit distance on the upper line is

such that twice its length can be fitted into the unit distance
on the lower line. When the two number lines are laid next to
one énother in.this fashion, to eéch number X oﬁ théAiowér N
line we can read cff the value 2 - x on the upzer line imme-
diately above. Similarly, by starting with a number line and
placing below it another number line whose unit distance corre-
spoﬁds to the number 3 on the first line, we can look up any
number X on the lower line and find 3 - X directly above.
This connection with change-of-units 1is one of the important
areas of application of the multiplication operation.

To conclude this section, we wish to indicate that a multi-
plicative egquation such as ¥y = 2 . x can be represented by a
certain rigid motion of a number line, as well as by a stretch-
ing motion. What we have in mind is a rotation. 1Indeed, 1if we
start with a number line in horizontal position and rota@e it
counter-clockwise, at a certain position the point 2 on the
1ine will 1ie directly above the original location of the point
1. (Figure 10.) If we stop the motion at that position, then

for every whole number X, the point 2 . x will lie directly

above the original location of the point X.
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TR T ST T ey

N1_¢——- — o arm—

- f - Figure 10.

‘The reason Tor this is the geometric fact of proportionality in
‘similar triangles. For example, in Figure 10 the triangle whose
vertices are (O, upper 2, lower 1) and the triangle (O, upper
6, lower 3) are similar, because two sides of the small triangle
are on the same lines as the corresponding sides of the large
.triangle, while the third sides of these two triangles are par-
allel (both being vertical). The geometric theory of similar
triangles then tells us that the ratio of the lengzths of the
bottom side to the top side of thé small triaﬁgle, mu;t be the
same as the ratio of the lengths of the bottom side to the top

side of the large triangle.

§8 (Track B)

1. Exercise. Suppose that C = {(California, Sacramento),

(Oregon, Salem), (Washington, Sacramento), (Oregon, Sacramento),
(California, Salem), (Washington, Salem)}. List the elements of
sets A and B such that A WB = C. Illustrate the elements

of C by means of a rectangular array.

ERIC
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3. Let H be the set of those ordered pairs (of whole
numbers) which are represented by the lattice points in figure
(a) beLow. (i) Find sets A,B,C,D,E,F of whole numbers, such
that H = (A xD) v (BXE)u(CxF). (ii) Do we also have

H=(AuBuC)x (DuEuyuF)? Justify your answer.

(I11) “Are the sets A and B disjoint? 1If so, can they be re-
placed by other sets A' and B' which are not disjoint in
satisfying (i)?

3
)
[

b
5
T
A |
2
/

L

1 s
LS

2345 61 figure (a)
3. Exercise. For each of the following equations, state

[
L
i
I

* whether its graph consists of a finite or infinite number of
lattice points, and whether it lies on a single straight line
. or not: (i) x -y =23 L _

(1) x=5"°Y
(111) y « x = 16

(iv) 4 * x =y .

’ 4L, Exercise. What equation can be pictured geometrically

as a uniform stretching motion of a number line on which each
labeled point moves three times as far to the right as 1ts

original distance from the zero point?

—— ——— v e
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5. Exercise. Consider the following figure on which a

triangle T with vertices (0, upper 3, lower 2) 1s described.
(a) Give the vertices of two more triangles, U and V, each

of which i1s similar to the given one.

N\

N
-~

.
+—— + t t
2 3 ¥ s b

_(b) Are these two triangles you found similar to each other?

n__n

(c) Write an equation involving variables "x" and "y", and

two uses of the multiplication sign, such that when a numerical
value x 1s given the corrcsponding number y can be read off
by means of the above diagram. Explain how we do this "read-

ing off".

6. Discussion. As in Exercise 4, certain equations lead

to "stretching"” of a line. Discuss stretching and shrinking

generally. Are such motions of a line "rigid motions"? What

is a rigid motion?
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§9 (Track C)

1. The Distributive law of Multiplication. As indicated

in §3, item 2, we can proceed, without mention of cartesian
products, to consider rectangular arrays of physical sets in

the classroom. These are very helpful for teaching multipli.a-

tion and related laws. For example, to show 3 < (2 + 5)
=(3 +-2)+ (3 - 5), obtain a bag of marbles or plastic chips.
Then the product 3 - 2 can be pictured by arranging the chips

as follows:: 3 3 g - To get the product 3 °* 5 arrange

R 5

Hence (3 - 2) + (3 - 5) 1is illustrated by the entire array.

But by moving the top batch down an inch or so, weé See that we

have just 3 - (2 + 5) chips.

5. The Commutative law of multiplication is even easier

to demonstrate using physical objects, since to show, for example,

that 3 - 2 =2 - 3, arrange the chips in rectangular array,

such as o0 o . Then circle these chips with a crayon to show
00
oo

3 sets of 2 or 2 sets of 3. or

p

3. Change of units. Measuring physical objects by using

a number line can be a stimulating classroom activity which

helps to motivate the concepts involved in changes of units.

ERIC
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Corizider a length of string which when stretched out and placed
on a number line falls between two points on the line. How can
we describe its length?' One way would be to change the basic

length of the unit on the number line, lengthening it or short-

ening it the proper amount so that the string, when placed in

themnew-nﬁmber-line;—w¢u1d~fal1~on a labeled-point.--For more --———
aévanced students consider the problem of devising a new number

- 1ine (actually the basic unit) ﬁhich 1s capable of measuring two

different lengths of string, neither of which falls on a labeled

point of the original number line.

©
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!

Other relations whose definitions should be clear are:
(1) 1less than or equal to, written <,
(11) greater than or equal to, written ..

An Experiment in Elementarv School Mathematics Instruction.

Going on in some elementary schools of Berkeley and certain

other East Bay cities is an experiment in mathematics education
which deserves the attention of anyone who plans to teach. This
project, called by the acronym SEED, Special Elementary Education
for the Disadvantaged; is operating on grade levels one through
gix in special schools, those which have a preponderance of stu-
dents whose upbringing has been called disadvantaged (for a
variety of reasons). '

The project departs from traditional mathematics instruction
along three m-in paths: i

(1) The subject matter presented is the kind usually con-
sidered “advanced mathematics’, for it revolves about algebra
and abstract geometry. This is based on the remarkable realiza-
tion that students in the elementary grades can comprehend the
kind of mathematics ordinarily reserved for high school and col-
lege students. '

(2) The teacher is not the usual elementary school teacher
but rather a specialist in mathematics, one who has training at
ieast at the level of B.A. in mathematics.

(3) The method these specialists are using is called the
Discovery Method, whereby the student is directly told as little
as possible, but instead he is 1ed to make discoveries for himself.
_ The regular teacher remain: in the room while a specialist
takes over the class. This takes care of discipline problems and
satisfies a state law concerning credentialed employees.

More importantly, however, this regular teacher is a witness
to some remarkable transformations in her students. Positive moti-
' vation, so critical a concept in teaching and one so often lacking
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in average teaching becomes a reality when students are permitted

and encouraged to creatively take part in the subject matter. The

children become fascinated with the process of discovering and com-

municating mathematics. In more common language they are turned-on.
As an extension of the SEED program, in the ninth grade of

Roosevelt Junipr High in Oakland a math specialist has been working

————with-the -students,-having them teach -third-graders-—-advanced-mathema---—

tics using the discovery method. This program has altered their
lives to a considerable degree, and it is these ninth graders who
will visit your sections at their ncxc time of meeting and present
a few facets of themselves and the SEED program.
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Remark: From the teaching demonstrations we have all witnessed,
the possibilities fvr creative teaching are seen to be vast.

We must rededicate ourselves to revolutionalizing outdated
methods of teaching.

Recall that in our study of the Whole number system (W,+,° ,exp),

we began by describing a scheme for naming the 2lements of W.
This was necessary since W is 1nf1n1te, whereas the number of
symbols employed to name the elemznts of Wis finite. In our
previous scheme we took ten basic symbols for the names of the
first ten numbers. These were: O, 1, 2, ..., 9. To name those
numbers that followed nine we used combinations of these first
ten names--that is, 10, 11, ..., 20, 21, ..., 30y -, 90, «coy
99, 100, ... There is, however, no mathematical reason why we
give different names to the first ten numbers and from these
develop a scheme. In fact, there are other possible ways, each
J of which results in a different numeration scheme.

We'll now demonstrate one alternative numeration scheme,
choosing 3 as its base--that is, we'll use three different basic
symbols 0, 1, 2, and name all of W using combinations of these
three. Thus, the whole numbers in their natural order would be
named as follows: |

0, 1, 2, 10, 11, 12, 2¢, 21, 22, 100, 101, 102, 110, 111,
112, 120, 121, 122, 200, 201, ...

Intuitively, you should be ablz to see that this is the same

kind of scheme we have previously used, except that we have but

0, 1, 2 to work with. However, if we want to talk about both

of these schemes, we have to have a method for distinguishing

the two. One such method, the one we will adopt, makes the
notational convention that numbers in the base 3 numeration scheme
. are to be put in parentheses with a subscript denoting the base.
- E.g. o, 1, 2, (10)3, (11;3, (12) 3 \20)3, (21)3, (22)3,...
ER&C
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Now, considering only what we have called the counting numbers
(that is, leaving out 0) we see that (10)3 is the third number
in the scheme of whole numbers and so (10)3 = 3.

- - “"SimilarlY”(lO2)3 = 11 PP

We'll now discuss how to translate from one numeration scheme -

‘natural order.. This translation can.be accomplished by using
the polyncmial representation of numbers, which we have discussed

... "before. - . ) y
"~° Recall that in the base 10 scheme, a number say 127, could be

expressed. in powers of the base 10,

tee... 127°= (1:10%) + (2-101) -+ (7-10°)

" Thepre is-a similar represen*ation that can be made for numbers -
.descrlibed in different bpases.

For example, : : .
(102); = (1:33) + (031 + (239 . .
.= (1-9) +(0-3) + (2-1)
= 9+ 0 + 2
= 11
Hence (102)3 = 11 which we knew by the simple process
of counting-the. numerals in the base 3 scheme until
we came to the eleventh, beginning as we mentioned

ry

before at 1.
With this process of representation in mind, we can find the way
_.to express 127 in the base 3 number system.
" First we represent 127 as a polynomial in powers of 3, using o

"the following powers of 3 to help us.

P =1
P =3
¥ =9 i
h e .
.3“ = 81

243 o o R
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Notice that 127 is smaller than 243 and so cannot be a multiple
of 35. So we try 3)+
i.e. 127 = 1'3” + (something else)

The (something else) is found by first finding out how much
is left in 127 after taking out 1°3L+ ; that is, after subtracting

81 from 127. This leaves 6.
Now out of 46, we can get 1° 33 + (something else)

t.e. 127 = 1° 3” + 1- 33 + (something else) - o
Doing what we did above, we finally arrive at the follow1ng-
127 = @39 + -3} + (2:3% + (0-3h + (1°3%
hemce 127 = (11201),

Now, say we pick 2110 in base 3 (that is, (2110)3) and want to
express it in base 10. This we can do as follows:

| (2110) 4 = (2:33) + (1-3%) + (1-3h) + (0-39)
= (2:27) + (1-9) + (1-3) + (0°1)
= (54) + (9) + (3) + (0)
= 66
Thus (2110)5 = 66

In this way you see it's possible to pass back and forth between
the two numeration schemes. Either one, of course, is satis-
factory in itself, and althougn you are more used to the base 10
scheme, our counting process, our algorithms and our general laws
all hold in the base 3 system.

For example; say we wanted to count the elements in the
set A = {R.Kennedy, R.Nixon, E.McCarthy, N.Rockefeller, D.Gregory,
North Star}
following our procedure for counting, we take the elements of A
and line them up with the counting numbers, this time using the

base 3 systen.
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Sso,  D.G., N.R., N.S., E.M., R.N., R.K

Thus n(4) = (20)3

. . If we had used our base 10 scheme, we would have found n(A) = 6,
and, of course, this checks since 6 = (20)3 .

Now, let's indicate how we would use the addition algorithm using

the base 3 scheme. First, recall that this algorithm depended

upon our use of the elementary addition table, *+ | 0,...,9

e e OO

9 h

In the base 3 system, elementas, addition facts are even simpler.

+] o 1 2
ol o 1 2
1 1 2 (10) 5
2 2 (10)3 (11)3

This table thus becomes hypothesis (1) for the addition algorithm.

Hypothesis (2), our general laws among which are the associative
and commutative laws, are exactly the same as before since these
laws concern themselves with the whole numbers themselves and not
the names of the numbers--that is, not the numeration scheme.

Hypothesis (3), the last of those underlining the addition al-
gorithm, was the polynomial representation of a number in powers
of the base.

Thus, to add (201)3 and (122)3 we proceed similarly to the way
———we did with numbers in the base 10 scheme: ~We Ycarry" when the
numbers added are greater than 2, using the elementary addition
table for the base 3 system.
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(201)3
(122).s
7(1100)3

We now check this result by using the translation process which

ATETTT Y T ETTHT RN T e s v eyt T T

. we described above.

(201) 4 = (2-32) + (0-31) + (1-39)
= 18+ 0 +1 ‘
= 19
(122), = (1-3%) + (2-3) + (2:39)
=9+6+2
= 17

Finally, (1100), < (1-33) + (1-32) + (0-3Y) + (039
= 27+ 9 +0 +0
= 36

and since it is true that 19 + 17 is indeed equal to 36, our
check is complete.

Before leaving numeration schemes, we might mention that
certain schemes other than the base 10 have found applications
outside of mathematics. In particular, the base 2 scheme, a
most economical system because but two different symbols, O, 1,
are used, is important since it is this schene which is used in

almost all electronic computers.

In order to see why number systems other than (W, +, -, exp)
are desirable for study, let's examine a few of the shortcomings
of the Whole Number system. From a practical standpoint, simple
measurement of physical objects cannct be handled adequately 1in
(W, +, *, exp). Recall that we discussed representing the whole

ussed representing the whole |

" numbers on a line: . . . « e : i

1 2 3 b ...
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" But if we want to measure an object, its beginnimg or end may
not coincide with a whole number.

e.g. 2 . .
1 2 3
(object)

In_additiqnigmathematicians,themselves_are_notuestheticallymsatis-.--4

"fied with the whole number system. For example, consider the
pProcess cailed subtraction, usually denoted 5y - placed between
‘certain whole nuabers. Mathematicians do not as a rule call -
an operation on W because it cannot be applied to gny pair of
whole numbers x, ¥ to get a new whole number x - ¥v. Jn other
words, subtraction does not satis{y a closure law in W. How
could we define subtraction more satisfactorily? First, notice
that 1t is a function which operates on certain ordered pairs
(x, ¥) of whole numbers.

Let's define S to be the set of all those ordered pairs (x, y)

of whole numbers such that x 2y i.e. such that the first member
of the ordered pair is greater
than or equal to the second
member.

Using our definition of the relacion 2 and the basic laws we

have studied, we could now prove the

Iheorem: If (x, y) 1is any element of S then there is one and
only one whole number z such that x = y + 2.

As a result of this theorem, we could introduce subtraction into
a subset of W, the set S, as follows.

Definition of Subtraction: For any ordered pair (x, y) in_ S )

we define x - y as the unique whole number z such that
X=y+z.
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Recall from last lecture, we were discussing a few disadvantages
of introducing subtraction into the whole number system
(W,+,*,exp); for example, when we try to extend the general
laws which apply to +,*,exp 1in an analogous way to subtraction,

~ all kinds of "messy” exceptions are necessary. The following
will further explain what we mean by "messy exceptions”.

First we defined S as the set of all ordered pairs
(x,y) of whole numbers such that x > y. Then we defined
subtraction, -, as a function which acts on any pair (x,y)
in the set S. The result of this action is a whole number 2z;
namely, the unique whole number 2z such that x =y + 2z,

If, however, X y are whole numbers such that the ordered
pair (x,y) 1is not/fS (1.e. if x < y), then there is no
whole number 2z such that x = y + z, and hence subtraction
1s not defined for such an (x,y). In other words, x - ¥

) is meaningless if x <.

With this definition of subtraction in mind, lets now
look at a few of the more familiar aspects of 1it,

There are Particular Subtraction facts, such as:

12 - 4 = 8 - _
3-0=3
5-4=1

4 - 5: meaningless
Also, there are General Statements concerning subtraction:
e.g. For any whole number x in W, x-x=0

For any whole number x in W, x-0=Xx

Lets check the possibility of a commutative law for
subtraction in W. It would read:
for any X,y in W Xx-y=y- X
Clearly, this would only be true in case x =y, because if
X <y, then by definition the left side of the above equation
. 18 meaningless whereas if x > y the right side 1s meaningless.

ER&C
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Thus, there is no comnutative law for subtraction in W,
What about an Assoclative law?

It would read: For any Xx,7,2 in W x - (y-2)=(x-y) -2
I8 this correct? No, it is false and we can show this by
a particular example.
Pake. x =4, y=2, z=1

Then the above equation reads 4 - (2 - 1) =(4-2) -1
That is, 4 -1 =2 -1 clearly false.
How can we change this law to make it a true one. One possible
way 1s to make it read:
For any x.y.z2 in W x-(y-2)=(x-3)+ 2z
Now, it is true that there are no numbers in W which make
this equation false, but if x=0 and y > O then the
right hamd side is meaningless; we have to search further,
We could again change it to read:
For any x,y,z in W 1if x>y and y > z then
x-(y-2)=(x-y)+z
Here finally, we have a true general statement, but not an
associative law for subtraction. Notice, that to make 1t
true, we were forced to impose fairly complicated conditions
on x,y,Zz. This is what we meant when we described the general
laws concerning subtraction as unesthetic. | i

Lets look at a distributive law for multiplication over
subtraction, with the necessary conditions to make it a true
statement.

Por any x,y,z in W, 1if y > z,

then x.(y-2) = (x.y) - (x.2)
It 1s precisely these messy conditions we will eradicate when
we pass from the whole numbers to the intagers.

—_  Remark: Usually, in the elementary schools, the_
positive rational numbers (fractions) are studied
prior to the introduction of the negative numbers,
but since there is nothing absolute about the order
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in which they are presented, here we will go to
the negative numbers first.
From our study of the whole numbers, we now know that:
if a,b are any whole numbers such that a > b, then
there is a whole number x such that a = b + x. But
if a,b are whole numbers with a < b, then there is no

“there is no whole number x such that 0 =1 + x.

We are now going to extend our system of whole numbers
to a new one with more numbers in it in which there will be
a number {not a whole number) which when added to 1 will
give O. '

This means:

(1) We must find a set of numbers, call it J, contain-
ing W as a subset with at least one new number
in i¢t. '

(11) Since the operation addition has only been defined
in W, 1in order to add numbers in this new set J,
which includes W as a subset, we must extend our
prévious definition of addition to include all the
numbers in J. This means finding an operation,
lets denote it by +., which can act on any
numbers x,y in J with the result of this action
being another number x +; ¥ in J. Furthermore,
we require that whenever x,y —are in W, then
b ¢ +J Yy=x+Yy. That is, when this new operation
+J is restricted to the numbers in W, it gives
the same results as +. This is what is meant
when we say +5 is an extension of +.

(111) Similarly for multiplication in the new set J,
which we'll denote by o5 e
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Now, that we've described our desired goals, how can we
accomplish them? There are, naturally, several equally valid
ways. Moreover, as with any mathematical theory, there are
axiomatic ways as well as the definitional approach. We have
mntioned this earlier with reference to Euclidean Geometry

andwthe»axibmatic approach- that was-used by G.- Peano, - —:
To begin, we'll give a general idea of the definitional

approach. The mathematician sees that he needs a new number

in J, call it 1, such that when combined with the number

1l in -J under the new operaticn +5 it gives O; that is,

1+J1*=0 -
We now look thrcugh the elements of J seeking a number y
such that 2 +3 ¥ = 0

I8 there one?
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We have been studying the whole number system (W,+,°),
which for various reasons already discussed, we want to extend
to a new number system (J,+J,'J); this extension means:
finding a set J which has W as a subset and finding
operations +5 and *y on this set J such that whenever
x,y are elements of W, then X +; ¥y =X+ 7§ and X o5y = XJ

In order that this number system (J,+J,-J) be indeed different

3

——from (W,+,*) we also require that  J -have-a number--x--in-—-—
it such that 1 +; x = 0. |

Question I: Can we find such a system (J,+J,-J) containing
only one new number in J 1in addition to the old numbers of
W? We can answer this in the fol c ;ing Way: suppese 1* is

a number in J such that 1 +J 1" 2 Since J 1is closed
under +; we must have that 1 +5 1 is 3130 in J.

Since we are assuming here that J = WU {1}, it must be

that 1* +J 1* i{s a number in this set. Which one can it be?

*

Could it be that 1" +. 1 = 02

J
No, because if ¥ +5 1 = 0, then the following would hold:
-— W * *
1+J1*=0=14;J1 :

i.e. 1" +5 1 =1 +5 1
and using the cancellation law, we would get L _
1" =1
This 1s false (i.e. 1" # 1) since 1 1s in W and 1 18
not in W. So by assuming that 1" +J 1 = 0 we are led to

@ contradiction. We thus know that 1" +5 1" £0

Could it be that 1 +5 1* = 10

- No, because 1f 1" +; 1* = 1, then by adding 1 to both
sides we would get
1 +; (1 +7 1 =141
and using the associative law, we would get
(1 *1 17) +5 =1+1
but we know 1 +5 1 =0, so theg-above equation reduces to:

L Aok e e
R an b i AN Afeiiink deihn et et A A
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*

0+Jl = 2,
which by the identity law fgr +g reduces to 1" = 2
This also is faise since 1 is not in W, whereas 2 1s.
We have again b2en led to a contradiction, so our hypothesis
again must z2lso be false--that is, we now know that
1*+J1*;él
You should now see th2+ pattern and be able to show that

©

ERIC

Aruitoxt provided by Eic:

*_ *_
1 +5 I #£72

£
S 74 ;

»* * *
Could it be that 1 +J l =12

NO, because if this were so; that is, if 1" +y 1 =17,
then adding ~J1 to both sides of this equation, we get

14, (17 +:1%) =14+17
*, Y
i.e. (1 +;1) 4;1 =0

*

i.e. O +5 l =0

1.e. 17 = 0,
bgt in fact this is not so, ¢ ~2e O 1is a wholé number and
1l 1s not a whole numbar. Thus, we've answered the abtove
Question in the negative, by showing 1* + 1* is not a

J »
whole number, and in addition it is not equal to 1 . Hence

1" + 1" must be a second new number of J. What else can
we say about this second new number 1* +5 1" in J?

* *
We claim: 2 +; (1 +5 1 ) =0

-

Proof: 2=1+1
* * * *»
hence, 2 +; (1 +;17) =(1+1)+; (1 +;1)

= (145 1) +; (1% +517)
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f

and by two applications of the associative law for

+J,
»* *
=1 +; ((1 +717) +;17),
which by definition of 1" =1 +; (0 +; 1%),
which by the commutative and} =1+ 1”
identity laws for fJ-
=0
Thus, 2 +; (l* +5 1*) = 0 and knowing this it is natural
to introduce the S B -

Definition: 2 =1" + 1"
Now, using this definition and the above ¢laim which
we have Jjust proved, we get that 2 +3 5‘ =0

Thus, we have found our new system must contain at
least two new numbers, 1* and 2*.

"~ Question II: Do we now have enough new numbers to satisfy
our requirements? No, we don't, and we would show this by
considering the number 1* +5 2*, which must be In J be-
cause J 1is requiced to Be closed under '+J. Arguing as
before we could show: 1 +4 2*‘# 0

#1

m bt o000 PN
*

#
#
#

That 1is, l* +J 2* is a third new number. Moreover, we could
show that 3 +5 (l* +5 2*) = 0, making 1t natural to intro-
duce the

Definition: 3 =1 +; 2%,

80 that we would have 3 +35 3* =0
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i

Proceeding in this way and using the Principle of Mathematical
Induction to obtain full generality, we would finally see
that: for every 0ld number z, except O, there must be’

a new number z in J such that =z +5 z* = 0

Furthermore, if x,y are two different old numbers

each different from O, then x* and y* will also be
different from each other.

We have been considering the following Problem. We
wish to find a number system (J,+J,-J) which

(1) 1s an extension of (Wt 0 )

(11) satisfies laws similar to those holding in the
system of whole numbers, e.g. the commutative,
associative, cancellation, and identity laws
for +y, Similar laws for ° 35 etc., and

(111) contains a number x such that 1 +;x=0

We have already found that if we have a system satisfying (i),
(11), (111), then for every z in W, z # 0, there must
be an element z in J such that
(a) z+ 2z = 0, and
(b) all these elements z are naw numbers,
i.e., they are not whole numbers of W.
Furthermore, if X,y are whole numbers # 0 and if X#Y,
then (e¢) x*‘% y*. . . _
Thus J must contain infinitely many distinct new numbers
(i.e., numbers not in W): 1%, 2%, 3% ...
Now that we know comathing about the size of J, 1let
us find out something about how the operation .
First of all we have

(A) 1" +30=0 ana 1% . 11"

because of the general laws x °J O=0 and x ‘7 l=x

7 must work.

which are amcng the desiderata (ii) above. Using the second
equation of line (A) above, together with the distributive
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lew, we find

1" +52=1 -+ (1 +5 1) = (1 '3 1) +5 (17«5 1)
*
=1 +5 1
= 2"

by definition of 2.
* %* * *
Similarly, we can find 1 ‘5 3 =3, 1 *; 4 =04, ...,

and more generally, for evéery 2z 1in W (otLer than O),
% .

*
(B) 1 e;z=2, |
Next let us compute 1" = 1%, Using the fact that
1 45 1¥ = 0, from (a) above, and the distributive law, we
»* * *
find 1" e (L4;17) =1 +70
=0 from line (A)
(1* °J 1) +5 (1" 7 1) =0 (distributive law)
14, (131" =1 4517 (by (A) and (a))
=1" +5 1 by commutative law (11)

*

(C) Hence l*'.J l =1, by cancellation law for +5-

Now if 2z 1s any whole number # O, then
* * %*

%
1 o752 =1 o (1 '3 z) by line (B) above

= (1* 5 1*) v 2 by assoclative law

: for - J
=1le;2 ' by line (C) above
= Z by identity law

for xe

(D) Thus we've sown: 1" z =2z, for z in W, z #0.

Next, if y,z in W and y,z # O then

il -3 2" = (y 3 1%) 5 2" by line (B) and
commutative law
for ©J

B - =¥e5 (1* “3 z*) by asscclative law{
*J
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=YV 52 by iine {D) above

]
«
[}
N

since *J reduces

to « when acting

on numbers in W.
(E) Thus we've shown v " 3 z* = y.2z whenever y,z 1in

W and y,z # O.

Finally, if ¥,z In W and y,Z # O then

R | 2" = z” i by commutative law, 3
C e o= (27 +72) ;¥ by (B)
=1 ‘3 (z ‘7 y) by associative law, -,
=1" 7 {(z.y) since *; Teduces to °
_ on W
= (z-.y)* by (B) agailn.
(F) We've shown y . z' = (zsy)  and
* *
2 ;¥ =(z°y)
[/ whenever y,z in W and y,z # O.

By combining (A), (E), (F) we get a complete rule for
carrying out the operation 7 ©On any pair of numbers of J,
new or old. Similarly, one can find how to carry out the
operation +;. | )

With all this knowledge about how .(J,+J,‘J) must look
if it is to satisfy (i), (ii), (iii) above, we can (1in various
; ways) construct such a system.

For instance, given any 2z in W, 2 # O, Wwe can
define 2z to be the ordered pair (z, Antares). These
"numbers" 2z  are rot in W, and if y # z then y £z,
so we can define J to be the set WU (1%,2%,3% ...} and
then we can define «; by the formulas (a), (E), (F) above,
and we can defilne +5 by analogous formulas.

It is then possible to prove that the system (J,+J,°J)

so defined satisfies (1i)-(iii).

©

. EC
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T

As a reminder of our notation, recall that we denoted

the set of whole numbers by: W = (0,1,2,3,...]}
zero by: O o

and the Natural numbers (or counting numbers) by: N = {1,2,3,...)
Also, we have begun to study the set of
Negative numbers: (1*,2%,3%,...), where, for each natural
number b, we defined b = (b,Antares). Putting these
negative numbers into a set together with the whole numbers,
. we get the set J which we called the set of Integers.,
- 1.e, we defined the set J as follows: J = W U The set of all
‘ negative numbers,

=(0,3,2,3,...,
1 32 )3 E BN A

On this new set J we defined the operation multiplication,
written °y» as follows:

(1) For two natural numbers
| If b,c are any natural numbers, b *7 c=Dbec
F (11) For two negative numbers
| : If b,c are any natural numbers, b ‘7 c* = bhec
| (111) For one natural number and one negative number
If b,c are any natural numbers, b '3 c* = (b~oc)' and
#* *
st e -J.b-(_c'b)

~ (1v) If one number is zero
f Given any integer x, O ;X = 0O and

0

onO

Also, we have the Definition of +; on the set J

(1) For two natural numbers
If a,b are any natural numbers, a +5 b=a+b
(11) For two negative numbers :
If a,b are any natural numbers, a” +5 K = (a + b)*
(111) For one natural number and one negative number

If a,b are any natural numbers,

mrwmmw |
~ ! ,
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J

T e

fa=%, 1f 33 %
b* E ) > a s v
a + =
- J i(b-a)* if a <b
* (b-a)" if b> a
b +;a =
a-b 1f b <a
(v) If one number is zero
If —x—is-any-integer; O +; %X =x
x +5 0=x

By way of examplés,

Notice, from part (iii) of the definition of +y, ‘that
a) " 4;1=1-1=0, and
b) 1+1°=1-1=0
* * »*
¢) 3+;8 =(8-3) «5
d) 8+ 3 =8-3=5
And from part (1ii) of the definition of o that

J)
» * *
3-J8 =(38) =24
We have now completed our definition of the Integer
Number System (J,+J,'J): It can be proven that this new

system satisfies the three conditions we previously deslred

any extension of (W,+,*) to satisfy, although we will not

do so here. It should be immediately clear, however, that
(J,+J,-J) is an extension of (W,+,-).

Definition: We introduce on J a one-place (unary) operation,

called negation and denoted by -; that 1s, given any lnteger
z of J, we apply the operation to get another integer ~ z,
whih we define as follows: If a 1s any natural number,

then “a=a

"0 = O - S S
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Question: For =x an integer, is “x a negative number?
You can't tell yet, since we don't have enough information
about x. However, we can say that: ,
If x 1is a positive number, ~x 1s a negative number.
If x 1s a negative number, “x 1s a positive number.
If x 18 zero, “x 1s zero.
_ __There are some general laws involving this new operation _

negation, which you should be aware of:

a) PFor all integers z, ( z) =2
Note that this follows from the definition of the
operation negation.

For all integers x,y

b) (Tx) o5 (¥) = xoy

¢c) (x)+; (y) = (x+;¥)

Q) (Cx) +; (3) = "(x +; ¥)

) Iet's go through a demonstration of (b) above;
1.e. we'll prove ( x) -J('y) = Xy, by using the definition

of negation and *ge
cagse 1: 1f x,y are natural numbers,
then (-X) ‘J (-Y) = (x*) .J (y*) = Xey =X .J y

case 11: If x,y are both negative numbérs,
then x = a* and y = b*, where a,b are
natural numbers sc
xe;¥=(a) e;(b7) =a-d
also, (Tx) «;("y) ="(a") «; ~(»")

880Jb

- =aq-e° b
TThus, (%) o3 (¥) =x ;Y




E
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case 111: If x 1s a natural number and y a negative
number, then y = b*, where b 1s a natural
number. So (Tx)+; (Ty) = (Tx) o T(b)

*
= X on

*
- B \ = (x °.I b)

&

*

Also, (x 3 y) = x ;b = (x oz b)*

case lv: If eilther x or Yy 1s zero,.
With no loss of generality, suppose x =0
and y 1s any integer.

Then (x) «5 (7¥) = (70) +; (')
¢ =0+ (y)

0
Also, x ‘7 Y= o) ;Y= 0

Hence, (x) «; (y)=x-;y¥

The other three laws (a), (c), (d) above may be proven similarly
by going through the four cases as we did in proving (b).
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Today we will finish our study of ths set of lntegers

J = [132:3:---5 o, 1*J2*)3*)"°}0 \

I S
natural zero negative
numbers inCegers

Although we have found that for all integers X,y

(x) o5 (Cy) = x";J ¥, this does not say that the product

of two negative integers 1s a positive integer, since ("x)

may in fact be positive. 1In order to express the general

proposition that a product of two negative integers is a

positive integer, we would write: For all natural numbers,
* *

b,c, b °J c

Finally on J, we want to introduce the operation -J,

bec.

called subtracticn. Recall that on the set W, subtraction
had many messy conditions accompanying 1ts use. This will
not be the case on J; here, precicely is one of the reasons
we decided to extend the set W.

First we need the ' I : -
Theorem: Glven any integers X,Y, ther= 1s one and only one

integer 2z such that x +y 2 =7.

Once, this theorew iz 2ztabiished e caa introduce the

v

Definition of Subtraction on J.

Given any integers Xx.y, we define y -3 x to be the unique

integer 2z such that x ty 2 =Y.

How we would prove the above theorer: There are many cases

to consider but once you cee the general procedure, 1t will

be easy for you to comnleie tne procf,
]
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Case 1: Suppose x,y are both natural numbers.

Subcase l.a: Suppose y > x. Then by the theory of

subtraction for the whole numbers, there is a whole

‘number 2z (namely, y - x) such that y = x + z.

This whole number 2z 1s an integer because all the

whole numbers are among the integers and also y=x +5 2,

since +J 1s an extension of +.

Subcase 1.b: Suppose not y > x; 1i.e. it is the case

that y < x. Then since there 1s no whole number
which can be added to x to give us y, we must look

for a negative number which will work. Let's take a

whole number b (namely, x - y) such that y + b = x.
Furthermore, b # 0, since y+O=y and y+ b = x,
and x # y, since by hypothesis y < x.

Thus, we know b is a whole number different from zero—
that 1s, a natural number. So there 1s a negative

number b*. Let's see 1f b works--that 1s, we would

-m Ww"—-—w-ﬁwﬂwwv‘.
o

like to show: x +5 b* = Y.

We know: y +5 b=x

Adding b* to both sides using the logic of equality,
»

b [ ]

we get (y +5 b) “Jb* = X +;3

The assocliative law for +1s applied to the left side,

* *
gives us Y 45 (b +; b ) = x +; b
»*
i.e. y +5 0=x +3 b
and by the additive identity for +J, y=X +J b*
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This completes the proof of Case 1; tlie other cases
follow analogously.
We finish with a few examples of general statements for

the subtraction operation -

J.
(1) For all integers x, x -, O =x and

&

ek adehataninse hatan NN RS SRR A A A A _.wv—U—..w“—,v,..m.‘ﬁ_

B i i dhnt i

o X ~J x = 0.

(11) For all integers x,y,2z,

| x'J(y.+Jz)=(x'JY)’JZ
Note: no meésy conditions here, as there were when
the analogous law for W was discussed,

(111) For all integers x, O -7 x="x

Notlice that x may be a negative number, zero, or a
natural number,
And Most Importantly,

(1v) For all integers x,y, x +; (7y) = x -7V

Now, with the idea of making addition, subtraction and
multiplication more intuitive, we'll discuss an application
of the negative numbers, one connecting the negative numbers
with geometry. We'll consider a straight line, straight in
the sense of Euclidean geometry; in principle, it has no
left end and no right end. We distinguish a line (infinite)
from a line segment which has ends. Arbitrarily, we place a

point on this line we call O, and to the right of 0O we

arbitrarily place anothe point we call_ 1. Example:

0 1
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/

We'll now use the distance from O to 1 as our unit
for measuring length, and using it we can proceed fo label
the points 2,3,4,... to the right of 1 and the points
"1,72,73,... to the left of 0. This line with the points

80 labeled is called in elementary school a number line; a

partial representation of it would look like this:

~

= »— -~ . ~———~ -0~ o — -
r ... 3 T2 71 0 1 2 3 4 ..
We™1l noW construct a kind of siide rule. (In fact,

you could call it an analogue computer.) Imagine it t» be

made of two pleces of some material, one piece sliding on
the other; both infinite, but one is fixed while the other
(:) can slide next to it. On each is a representation of a

number line, It looks about like this:
***T3 T2 71 91 2 B ceee

8liding scale —>

L

fixed scale —> | \ 5

P r
- -

.3 2 "1 01 2 3....
Here is the way it works: Suppose we want to add the two
integers 2 and ~3. That is, we want to find 2 +5 °3.
(1) Take the O point on the sliding scale and slide it

over to the number 2 on the fixed scale, like this:

3 2 "1 0 1 2 3
"

]
b
[

-4
L
-
4
o
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L (11) Find ~3 on the sliding scale and
‘ (111) Obtain the answer by reading the number opposite
| this on the fixed scale, in this case "1,

- - Phus 245 T3 =71, - s o m s e s oo

Finally, let-us mention that our use of-- *J —and 1.1

- e a——— —

- ————— = e = -

it T emmtw—

are pedagological devices, helpful for understanding the
extension of W to J. Once we have the knowledge of these
new numbers and the laws govzrning them, we never need to
return to our old definiticns, Hence, fram now"on, we'll

- ... drop the subscript J on + and e, -

ERIC

Aruitoxt provided by Eic:
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As an intuitive aid to understanding addition in the

set J of integers, we introduced a hypothetical slide

Lule: eee =3 =2 -1 0 1 2 3 ...
i i C sliding scale
+—— 4 —— < fixed scale
oo -3 -2 -1 0 1 2 3 e e o0

To find the sum, x + y, where x and y are any two

given integers,

%
O
o3

(1) Move the O point on the slidineg scale opposite
the fixed scale.

(11) Find y on the sliding scale, and

(111; The number on the fixed scale opposite y on the sliding

scale 1s the desired number x + Y.

Notice, from the side rule, we can distingulsh the following:

Case 1: If x,y are natural numbers, then so is x + Y.

Example: 1 + 4 =5 B

Case 2: If x,y are negative numbers, then so is x + y,
since the scale is moved to the left.
Example: "3 + "2 = 75

Case 3: If x 1is positive and y is negative (or vice-versa)
then the nature of x + y depends on the values of
X and Y.

Examples: 3 + 2 = "1
l+ 4="3

2+ 3=1
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Furthermore, we can use our slide rule for the operation
subtractioiu, if we first recall the most important general
law about subtractizn ou J vwhich stated: For any integers
X,y, X -y =X+ y. That is, we rewcite the subtraction

problem as an addition. Example: "4 - "6, which by above

1s the same as 4 + ~{76), wnich is the same as 4 + 6,
_because for every integer x. ('x) = x.

Thus, we are left with 2 simple sum of twc integers which

pan he carricd ont on the slide rule as before.

Although the slicde ruie is an aid for addition and sub-
traction of integers, for inultipnllication we introduce the
concept of graphs. Suppose we have an equation such as
y = 2 +x; assoclated with “his cquation is a picture called
a graph derived ac follows: Flrst we draw two number lines,
one horizontal, calied the horizontal or x-axis and one
vertical, the vertlcal or y-axis; both of these lines

crossing at thair respective 0O polints, es follows:

.
A)
W

-2 4L
-3 L
A pair of number lines drawn as above is called a set of

co-ordinate axzs. Within thz plane of these co-ordinate axes,

we place a point, the geometrical picture of any ordered

1
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péif of integers (x,y), where the first member of the ordered
pair refers to the distance and direction along the horizontal
axis and the second member refers to the distance and direction

along the vertical axis.

The- bwerozdered—paxre-€—2—§%——and—f§374)_—would~have

A - _ (3 q)
their representation as follows: -2 5) 3t
] 3 24
3 _ ‘ b
e 4 A - (¥ L i F.
-4 -3 -2 - v\ 2 3 g
— — .’ g
4 -l <=
3
o oL i e m— . o ——— _‘3 -

Now, to get the graph of the equation y = 2 «x,

(1) Choose varicus arbitrary integers as values for Xx.

R, A
-

(11) Compute thc corresponding value for y, and then

(111) Plot (draw) the picture of the ordered pairs (x,y).

Using the equation y =2 ¢x, we first choose values of X,
say 0,1,2,3, 1, 5; these are arbitrary. Now we compute,
using the given equation. the values of y corresponding to

these values of x and conveniently list them in a table:

x|y
0 0
1l 2
2 | i
5 | 6
-1 |2
2 |y

s e e e s a——— -— h— e - - - - —— e ——

Using these five ordered palrs [(0,0),(l,:) (2 4),(3,6),(71,72)

(T2,74)], we plot the graph of these points drawing in what
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appears to be a svra*ght line connecting them, as follows:

. 1-
T (3,6)
1 (2,4) Graph of
31L 2
y=2ex
2T 1,2)
1/ (1,

e e T e Ay
*b "S-y 3 -2 -\ "\zsu S w7
\

( 1: 2/ 1T~ (0,07

( 2, 4) T-4
+ -
Notice, that 1f we did not know the product of 2 and 1

or the product of 2 and "2, the graph of y=2e¢x could
suggest them, since even vithout these products, we would
have a straight line connecting (3,6), (2,4) and (1,2).
Exteading this line on both sides, to arrive at 2 .1, we
would locate 1 on the horizontal axis and notice that

the ordered pair on the line of the graph of y = 2+ x whose

first co-ordinate is "1 1s (71,72). fThus 2 -"1 = "2,
Similarly to arrive at 2 « 2, we first locate "2 on the
horizontal axis and se2 that the ordered pair on the graph of
Yy = 2+x whose first co-ordinate is ~2 1is (72,74). Thus
2 e 2="4,

Now drawing the graphs of y =1x, y = 2+ X, ¥y =23e+x, ete,
you can see that as the whole number which we multiply x by

increases, the corresponding graphs increase in steepness,

] y=53Xx
— ==ty = 2% e e
y=-=l°x

—— et
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!

From these grahs, this much should be clear: If the "x-value"
1s negative, the corresponding ordered pair on any of these
graphs will hwe a negative "y-value". Thus, we can conclude
that wﬁen we multiply a negative number by the positive number

l, 2 or 3, the result is negative. Moreover, we could.

continue drawing the graphs of y = bs.x for b any positive
Integer, getting steeper and steepé} graphs, and then be able
to conclude that #he product of a positive and a negative
ramber will‘alwafs be negative.

Once this is done, we could plot the graphs of y = "1 x,

y= 2¢X, y= 3+x, or in general y = b.x, where b

1s any positive number; this would result in the following
graphs: y=-3-x
Y= 2%

y= 1lex

From this series of graphs we could conclude that for x any
negative number, the corresponding value for Yy 1in the graph
would be positive--that is, the product of any two negative

numbers in a positive number.

N




lecture 18, May 15, 196E.

Let us quickly review some of the details of graphing
using as our first example the equation y = 2+ x. "~We first
arbitrarily select values for x substituting them into

this equation and so getting avalue for y. We summarize

the values so obtzcined in a table: - x -}

y-axis /(
ki (3,6) 1
And now we plot them: [

foe
P
n
“
&
N”
{
VI Y]
]

Yy=2eX 1

Similarly we plot the graph of y = 2.x

- .y-axis
x |y (T2,4) 1
1l :2 - . y = -2 LD ¢
2 | 4 (71,2) -
3 |°6
4 8
= - +—+ x-axis
(1,72)
| (2,74)

Notice that: Takling a negative value for x and asking what
is the corresponding value of y (looking only at the
graph) we see that the product of two negative numbers

gives us a positive number .
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Finally, we mention that graphs of additive equations as well

as the multiplicative equations are meaningful entities..

y-axis ¢
Example: y =2 + X

1 y=2+ X
x y
_-_0,_, .. _2_,, — -
1 b
2 b
3 5

Some Other Aspects of the Integers

If we're given a positive integer, say 5, then its
clearly possible to break it into a2 sum of two smaller integers;
for example, 5 =2 + 3. Similarly we can break 2 and 3
déwn, finally getting 5=1+1+ 1+ 1 + 1. It should ¢ “so
be quite clear that every positive integer may be broken down
to a sum of 1's.

However, for the operation muliiplicatipn, the case 1is
quite different. For example, 5 cannot be broken down
into a product of two (or more) smaller integers, and SO 5

is called a prime number. As another example, 196 can be

broken down: first, since 196 1is an even number, we see
that 196 = 2 - 98. However, we can go still further.

i.e. 196 = 2 « 98
=2.2-.49
‘-"2‘2'?07

. = 22. 72 s using our exponential notation.

©
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Notice, we cannot continue this process further Since 2
and 7 canndt be broken down into a product of soaller
positive integers; they are both prime numbers. Thus, we
have represented 196 as the product of two prime numbers

each "taken" twice. 1In fact, we have the

Theorem Eééry integer not: 0, 71, or 1, Hhié; is not
itself prime can be expressed as a product of positive
prime numbers (with a factor ~1 in case the given number
18 negative) énd indeed in only one way (aside from different

orderings of the prime factors or extra factors of 1),

Consequently, in the set J of all integers, we distin-
guish the following types of numbers:
(1) O : The additive identity element.
(11) Units : 1, "1. These elements have a multipli-
cative inv:rse in the set J--1i.e. given either of
these numter, say 1, we can find a number in J
which when multipiied oy the given number results
in the multiplicative identity element in J, Wwhich
1s 1. 1In other words, ~1 is its own multipli-
cative inverse, and 1 is its own multiplicative
inverse since "1 471 =1 and 1.1 = 1,
Notice, however that 2 has.gg multiplicative inverse;
that 1s, there 1z no integer which when multiplied by 2
glves us 1. In fact, there are no integers except ~1 and
1 which have multiplicative inverses in the set J. Thus
the only units in the set J are 1 and 1.
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Before we continue, we introduce the

V-

Definiticn of Diviscr: Given an integer x, we call z a

- divisor of x or a factor of x Just in case there is

some integer W such that x = 2 ow,

Now,- all other elemonis in J -are-divided into two kinds: -- - - -

o (111) Primes : These are the integers x, other than 0
- and the units, whose ;nly factors are 1, 1, x, _x.
For example, 5 1s a prime, since the only divisors
of 5 are 1, "1, 5, 5. Similarly, ~13 1s a
prime.

(1v) Composites : All integers other than O, the units

and the priaes.

Exacpie: 20 1s a composite since it is not O,

el

not a unit and not a prime. (726 = 2 .713)

Now that vwe ha-e subdivided the integers into various

categories, lets iavzstiate a few applications. First, a

Defin‘tion : Glvin any positive integers x,y, by a common

divisor of x and y, we mean an integer z which 1is a

divisor of both x and .
We ncw statce ( but do not prove) a

Theorem: Among all common divisors of x and Yy there is
—-- —- . a certain positive integer 2z such that every other common

.divisor of x and y 1is aiso a divisor of z. Thus we have *hn

1

©
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Definition: This unique common divisor of x and y 1s

called the greatest commoni divisor of x and y, abbreviated

g.c.d.(x,:).

Examples: (1) Civan the two integers 12 and 18, we first

express them as a product--of- prime-numbers-according to our—  ———-

theorenm. 12 =2¢2¢3

Now to find all the positive féﬁtors of 12, 1mmediately we

know 1 1s, and then we find the r—oducts of its prime factors;
Tirat, one at a time; then two at a time, then three at a time.

Thus the positive divisors of 12 are: 1, 2, 3, 4, 6, 12.
Similarly for 18 = 2<9 =2+¢3.3, Its divisors are: 1,2,3,6,9,18.

Now the common divisors of 12 and 18 are: 1, 2, 3, 6

and the .2.7.{(12,18) 1s 6, since all the other common

&t Nl

divisors of 12 and 13 are divisors of 6.

N\
Ty
, .

'
.
.
V

.

?
4
.
.
v
$
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At the last lecture, we introduced the following two

definitions:

1)

Definition of Divisor. An integer x 1is a divisor or

factor of an infeger y Just in case there 1s an

[

integer z such tha® x- z = y. To express this we
use the notation xly, which is read x divides &
or if it is not the case that x divides y, then

we write x/[y.

For example, 3|6, 3|18, 3/20.

Definition of Prime. An integer y 1s a prime number
Just in case the only factors of y are 1, -1, y, -J.
Examples: 7 1s a prime

14 is not a prime

Concerning these newly defined notions of Frime and

divisor, we now state a few General Statements or Laws:

For divisor we have: 1) Transitive Law for Divides

If x,y,z are any integers such that x|y and ylz,

then also x|z. In order to prove this law, which we leave

as an exercise, look carefully at the proof previously given

for the transitive law for the relation <.

2) If x and v are any integers

such that x|y and y|lx then x=y or x="y.
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For Primes we have: 1) If x 1is any positive integer, then

there 1s a prime number 2z such that z > x_ This famous

theorem involving primes goes back to Euclid and his proof

of it is both simple and elegant} Notice that the law states

| that there. are infinltely many prime numbers. -

2) If z 1is any positive even number,

= ~ then there are numbers x and “y which are either prime or
1 such that z = x + y. This is a general statement since
It involives all positive even numbers. It was first conjec-

B _EP??@_?Y a man named Goldbach about 200 years ago and it

8t£i1l1] remains a conjecture today--that is, i1ts truth or fal-

8ity has not been de::srmined.

We have previously introduced the definition of greatest

common divisor of a given pair of positive integers x and

y. There are two basic methods for finding this g.c.d.(x,y).
Method 1: Factor x and then y into their prime factors,
a a a b b : b
1 2 n ] n
Say X = pl L4 pa ® o e ° pn and y = pl g p22. eoe ® pn  J

where PysPps...,P, are the prime factors of x and y,

and al’aa""’an’bl’ba’""bn are the whole number

equpents of these factors, Some of the a's and b's

may be zero. Then the g.c.d.(x,y) 1is the number =z,
c1 c, cn L
where zZ = pl * Py e ... pn and where
ey — T -

1 Sece What is Mathematics? by Ceurant and Robbins.
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¢, = minirmum of (al,bl)

c2 = n " ( ae, b2)
e = "'“".‘—“(an’bn)""““ |
: a; 1f a, < by
Notice: minirum of (a;,b;) =
' or

( by if b, <a,

For example: To find £.c.d.(12,18), first we factor 12

and 18 1into thelr prime factors.

12=26=2-2-3 f.e. 12 =2°. 31
18=2+9=2-3.3 i.e. 18 =21-32
Therefore g.c.d.(12,18) = 2™n(2,1), smin(1,2)
=2t. 3l ¢

So g.c.d.(12,18) = 6.

It 1s a lucky accident that the primes in the above two decom-

positions are tha2 same. The following examplé shows that
regardless of the original prime decomposition, we can intro-
duce primes raised to the zero power in the decomposition so
that they will always b= the same.
Say, we want to find g.c.d.(48,76).' We first factor
che two nunmbers.
ll8=2-2-l4'3=2-2-2-2-3=2u-3

76 =2.38 =2.2.19 = 22. 19

But also, 48 = 2“: 37 .19




Lecture 19, May 17, 1968. ;é
Hence, g.c.d. (48,76) = 2min(#,2) smin(1,0),,4min(0,1)

= 22.39.190 = 2211

l.e. g.c.d.(48,76) = 4

Method 2 (Euclid's Method): Again, say we're asked to find

NS

g.c.d. (76,48). First, divide the smaller number into the
larger, getting a remainder. 76 = 1-48 ; 28. The method
of Euclid says: g.c.d. (76,48) = g.c.d. (48,28). Repeating
this procedure for g.c.d.(48,28), we first divide 28

into 48, getting 48 = 128 + 20. Again Euclid's method
says g.c.d. (48,28) = g.c.d.(28,20). Again, dividing

28 by 20, we get 28 = 1.20 + 8. Thus, g.c.d.(28,20) =

= g.c.d.(20,8). So, again we divide 20 by 8, giving us

20 = 2.8 + 4, Therefure g.c.d.(20,8) = g.c.d.(8, 4). Now,
however, it is easy to see that g.c.d.(8,4%) = 4. Thus,

but Euclid's method we have that

g.c.d.(76,48) = g.c.d.(48,28) = g.c.d.(28,20) =
= g.c.d.(20,8) = g.c.d.(8,4) = 4.

So, by the logic of equality, g.c.d.(76,48) = 4.
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We have seen that for any pair of integers x,y there

1s a g.c.d.(x,¥) such that every common divisor of x and

y 1is a divisor of it.

To find the g.c.d.(x,y) we have investigated the

——— two following methods:

Method 1: Obtain prime decomposition of x and y; then

" use minimum exponents for each prime.

Method 2 (Zuclid's Algorithm): Division with remainders.

e.g. to find the g.c.d.(136,26), we divide 136 by 26
getting 5 with remainder 6 -- that is, 136 =526 + 6
:‘ And Euclid's Algorithm says g.c.d.(136,26) = g.c.d.(26,6)
| Repeating this process, 26 = 4-6 + 2, and so

: g.c.d.(26,6) = g.c.d.(6,2), which clearly is é.

Question: Why does this process of division with remainder

glve us two numbers whose g.c.d. 1is the same as the g.c.d.
of the original pair of numbers? )

In order to a.iswer this question, we will first make
clear wﬁat we mean by division with remainder and then pr<ceed

to a Justification of Euclid's Algorithm.

Theorem: Given any positlve 1ntegers x and Yy, there are
whole numbers q and @ such that

X=q-y+r and r <{Yy.
We describe these numbers q and r by saying that q 1is

the guotient upon dividing x by y and r 1is the remainder.

ERIC
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in the above example where we found the g.c.d.(136,26),
we first found that 136 =5 «(26) + 6, In this example
136 1s x, 26 is y, 5 is q and 6 1is r.

If we use this theorem, then the key step in Euclid's
__ Algorithm is the_ _

Theorem: g.c.d.(x,y) = g.c.d.(y,r)

-

Our proof of this theorem will thus be the justification
TOr the Euclidean Algourithm. We divide “the proof dinto “two

par§§:

e C——— — e e -

Proof Part 1l: Suppose 2z 1is any common divisor of y and »r.

Then we claim that 2z must also be a common divisor of x
and vy.

Proof of claim: We‘re assuming 2z 1s a common divisor

of y and r, so by definition of divisor y = z-.a
for some integer a, and also r =z b for some

igteger b. By our lSt theorem we know x =qe.y + r .
Into this equation we substitute the values of y and
r we just found (using the loglc of equality).

Thus Xx=qe(z%a) + 20

Noq using the commutative and assoclative laws
for multiplication together with the uistributive law,
we transform the above equation into x =z (ge+a + b)

e - Since gq 1is an integer (all whole numbers are integers),

"a 18 an integer and b 1s an integer, by the closure

©
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\¥

law for multiplication and addition we know gq.a + b
is an integer. Hence by definition of divisor, since
2 multiplied by some integer gives us x, we know z

is a divisor of x. Since we assumed z was‘a divisor

—

Of-—y;—we now know z- is-a-common divisor of . x and

y.

N

Proof Part 2: Suppose w 18 any common divisor of x and y.

Then we claim W must also be a common divisor of y and r.

Proof of claim: By assumption, x = wep Tor some

integer p and Yy =wen for some integer n. From
the theorem about division with remainder, we know
X =Yye+.q+7r, Adding the integer ~(y -q) to both
Ssides gives us

x-(y-qa)=(y-a+7r)-y.q,
which reduces to X-(yeq) =r.
Now replacing x and y by what we fopnd them equal to
gives us Wep - ((wWenjeq) =r. Using the necess—
ary general laws (what are they?) gives us w(p - n-q) = r
But p - n-q 4is some integer (why?). Thus by defini-
tion W must be a divisor of r, and since we were
assuming w a divisor of y, we now know w 1is a

common divisor of y and r.

The proofs of Part 1 and Part 2 are now complete.

o

©
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Putting these two parts together tells us that all the common
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divisors of x and y are the same common divisors of y
and r. So in particular it must be the case that the great-
est common divisor of x and y 1s the greatest common

divisor of y and r -- i.e. g.c.d.(x,y) = g.c.d.(y,r).

The Concept of Least Common Multiple

Definition: Given any integers u,v we say that u 1is a

multiple of v Jjust in case (if and only if) v is a

factor of u -- i.e., v 1is a multiple of v Jjust in case

u=a-v for some integer a. u 1is a common multiple of

v and t 1if and only if u 1is a multiple of v and u
is a2 multiple of t.

Query: Does every pair x,y of integers have a common
multiple? Yes, since the integer x-y 1is a multiple of

X and also a multiple of y.

Now there is a theorem which says that for u,v any
integers different from O, there is a smallest positive
integer which is a common multiple of u and v. By definition,

We cal.. this integer the least common multiple of u and vV

and write it as 1l.c.m.(u,v). Can you see that every common

multiple of u and v 1is a multiple of 1l.c.m.{u,v)?

How to find the 1l.c.m. of two given non-zero integers.

We illustrate by two methods, finding 1l.c.m.(14,21)
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Method 1: Express bcth numders zs a product of primes,

then find the product o” the primes with maximum exponent.

1
We 1llustrate: 14 Lol s0. 41

[
N
~3
i
n
-~

21 =3 + T = 3" . T =20,,31.71
)

So l.c.m.(14, 21) = =" 3max(0:1), 7max(1,1)
1

] = quzmj} *» T- =42

Method 2: First use Eueclid's Algorithm to obtain the

g.c.d. of the given pair of numbers. Then use the general

law which cays

T aomm [ )
2oL eclle\UyV ) =

So again using the two numbers 14 and 21 we first find
the g.c.d.(14, 21) by Euclid's Algorithm.
21 =1 ° 14 + 7

so 808069(14, 21) = g.c:d.(ll",?)
=T
Now applying the formula above, we have
14 « 21

l.c.m.(i%,21) = = 42 ,

7 _
‘and this checks withk m=thod 1. '

Our last topic in the system of integers is the relation
of order for the iategeis. FRecall that in the system of whole
number we had an order relation < ., “hen we extend the whole
number system of integers we also would like to extend <

to a new relation which we'll temporarily write as < Also

J [ ]

remember that the abstract relation < corresponded to the

visual relation "to the ief: of" when we lined up the whole

Full Tt Provided by ERIC.
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numbers in their counting order. It is natural tiat the new
relation gJ corresponds to the visual relation "to the

left of" on the number line

b g
)& I
.
.
[ ]

0

- 4

oo.-ar

We make this concept more precise by a

— Definition: - For X,y ~any intéééré‘ﬁgﬂaéfiﬁé’mi_kﬁ y by
the following cases:

(1) If x and y are both whole numbers, then we
define x <; y 1f and only 1f x < y. (This assures

us that <; is an extension of <.)

(11) If x 1s a negative number and Yy a whole number
then it 1s always true that x gJ y .

(111) If x a whole number and Y a negative number
then not x <57Y.

(iv) If x and y are both negative numbers then there
are natural numbers a,b such that x = "a

and y = b ther i1t will be the case that
X gJ Yy 1f and only if b < a.

)
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We have extended ‘the whole_number-system (W,+,<) to

a -new. and larger system, the integer number system (J,+,°).

-— e 5

' However, this new system alsc has deficiencies, which we'll

“now discuss from two points of view, the pure and appliec.

-

I) Pure Mathemaztics

Recall that in the system of whole numbers we can find

numﬁers a and b for which there is no number x such
that a + x = b. Just take a =1, b = 0. But in the system
-of integers, for every a,b in J we can find an x 1in J
for which a + x = 0. In fact, x can be taken as' b - a,
for subtraction is always possible in the system (J,+,°),
whereas in W we can only form b - a if b > a. However,
in the system J (just as in the system W) we can.find
numbers a,b with a # O fcr which there is no number x

in J satisfying a-.x = . PFor example, take a =2, b= 1.
And in general, if a,b are integers with a # O, we can
find an integer x such tha* a->x = b only 1n case alb.
That is, a must be a factor of b. The analogy should now
be a little clearer, for here we're concentrating on solutions
to multiplicative equations, whereas before we wished to find
sol&tions to additive equations. Thus from-the standpoint of

pure mathematics we wish to extend our number system (J,+,-)

to a new number systenm (R,+R,°H) which will satisfy the basic
'laws studied for earlier systems (e.g., commutative, associa-

tive, distrioutive, cancellation and identity laws) and which
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in addition will have numbers x satisfying a ‘R X = b for

any a,b in_ R, as long as a # 0. Moreover, when we extended

(W,+,°) to (J,+,*) we were then able to apply the operation

subtraction to any a,b in J resulting in a number b - a

a solution to a + x = b was only possible for numbers a,b
1f b > a. In the system of integers, for a # 0 and when
alb we can apply division to obtain an integer b + a, and
this 1s the number x satisfying the equation a - x = b. So
Just as when we moved from W to J, we were then able to
apply subtraction to any a .and b in J; similarly, when
We pass from J to R we will be able to apply divisior to
any a,b 1in R, as long as a # 0, regardless of whether

a 1s a factor of b or not.

II). Applied Mathematics

a) Prom the viewpoint of applied mathematics, recall

our construction of the number line, an infinite line with

integers attached tc certain points.

L

i 4 3 1 1 [
e.. 3 72 71 01 2 3...

It is clear that there are gaps between adjacent pairs of

nuvmbers. Can we find_new numbers to attach to the points on

the line which are between those points having integers

attached to them? Clearly, this would be desirable for purposes

e of measurement. Additiorially, intermediate points on the

©
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num- er line would be of use in helping us to locate points

on the plane when we use two perpendicular number lines as a

pair of co-ordinate axes. Of interest, also, 1s the connection

between these desired intermedlate points on the number iine
. _and those numbers x that satisfy a.x=1b, a # 0. On the

number line consider the point equally distant from the

points labelled O and

[ L
N ) ] —
1

o 1 2 3...

What would be an appropriate number to attach to this point?
More preclsely if we had such a number, what properties would
7.¢ have? Well, if we label this point as x and lay off

the segment from O to x a second time beyond x we reach

the point 3. Thus we wish x +-x = 3. That 1is,
<:> X°1l+x1 =73,

or x*(1+1) =3,

or 2°+*x = 3,

assuming, of course, our new numbers obey the general laws
previously studiled. |
; ' <n the same way many numbers attached to intermediate
points on the number line can be shown to satisfy multiplica-
tive equations of the form a e« x == b,
b) A Second Applicat{onal Viewpoint: Pies, the model
most often found in elementary school éexts. The whole
wumbers were originally introduced to answer the question
 "How Many?”. 1.e. How many objects were in a given set?
‘;; i1.e. Given a set A, what number n(A), do we get by counting

ERIC
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the elements of A? 1In our new extension we would like our

new numbers to help us answer the question "How Much?".

e.g., given a portion of a whole pie, just how much of the

whole pie is represented therein? 1In other words, we seek
———__a number -x. to attach to each slice of ple in such a way as B

to give us a way of "measuring” how much of a whole pie it

ccntains., Once again, there ié‘a connection between these

numbers éttached to pie slices and those numbers which satisfy

aeXx = b, Suppose we divide 3z Ple equally into six portions:

|-
What can we say about the number x which measures how much

of the whole pie is contained in each slice? Clearly, it is

a number which wher added to itself six timesgives us a whole

Ple. That is, X+ X + X+ X + X + X = 1,
or X+ (1l +1+1+1+1+1)=1
or 6ex =1
Analogously, suppose we want to divide two pies equally
among five people. The number y attached to each slice
Would then clearly satisfy 5.y = 2.

¢) The following applicational viewpoint, Probability,
has not generally been discussed in the elementary school;
nevertheless, in the world around us, it is an extremely

pervasive concept. The classic example, and one extremely

useful, is ccin tossing experiments or selection of bails from
a box (or urn).

e e
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At the last lecture we saw that an extension of the inte-
ger number system (J,+,+) was desireable in order to solve

certain multiplicative ecuations--that is, the integers did

not contain numbers that satisfied certain equations and this

e deficiency has thus provided the motivation for constructing
a new number system. However, what exactlj should we construct?
Our approach to this question éan perhaps be clarified by an
analogy. If we were asked to go to the forest and seek an
animal called a Frumkin, about which we knew nothing, it
would be an impossible undertaking; if, however, we found out
that this Frumkin has four legs, a brown-ringed tail, fourteen
violet whiskers and travels about in packs of no less than
seven other Frumlins, our task would certainly be an easier
one.

What do we know about waat we are seeking? We know we

are looking for some number system, we'll call it (R,+R,°R),

such that:

(1) It is an extension of the previous system (T,+,°)

(11) The new system sculd satisfy the commutative,
associative, distributive, cancellation and identity
(for 0 and 1) 1laws. For example we want this
new gystem to satisfy the restricted cancellation

. law for "R " Fog every x,y,z 1in R, 1if

X eg ¥ =X op 2z and if x # 0, then y = z.
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(111) For any numbers a,b in R, 1if a # O then there
is 2 number x 1in R such that a2 - R Xe=D)b

(note that this property is not satisfied in (J,+,°))

Let us begin our search for (R,+ as we did when

R 'R/

—— ——we-extended (Wytyo)o— -

Part I: Axiomatic Approach--let us simply assume that we have
found a number system (R;+R"R) satisfying properties
(1)-(11i) above and explore the consequences of this
assumption. This ié to help us later on in our defini-
tional approach. |

With this assumption, we start with a

<:> Theorem: Given any nuugbers a,b in R with a # 0, there

Remark: (11i) above guarantees the fact there will be one
number x such that a ‘R X = b. This theorem tells
us there are no more than one. ' - \

Proof: Suppose a,b are any numbers in R with a # 0 d
suppose that x and y are numbers in R 8uch that
aep X = b and also a *RY = b. In order to prove
this theorem, we must now show that x =y, for then
there can be but one solution to a "R X =b. First,
by the logic of equality we see that a ‘R X = 3 'R y.
Also by assumption we know a # O, 8o we can apply the
restricted cancellation law for "R+ SO0 X =Y

’,’ This theorem becomes the basis for a

is exactly one--no more--number x in R such that a ‘R X =Db _
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Definition: Given any numbers a,b in R with a £ 0, we

b
define the notation 3 to be the unique number x of R

such that a ., X = b,

R
(How to we know this number x is unique?)

Warriigg: The textbcOk uses _,-2 ‘as a symbol for ]
the ordered pair (b,a).
18t Question: Suppose a,b,c,d\ are numbersin R with )
b _d
&a #0, c # 0., Can we have 3 =3 ;

Answer: Of course; whenever b =d and a = e¢. |

More Interesting Question: Are there other times? That 1s, |

can we have §=% even 1f b #d and a # c? '

The answer to this 2nd question is yes, as shown by the 1

Theorem: Let a,b be numbers in R with a # O and let

|

b b ‘g ™

m be any number in R such that m # 0. Then — = ———
a aepm

Proof: By definition, -2 is the unique number x such

that (1) a5 x=0»

R b g M _
Alec by definition, Arwrer is the unique number y such that
‘R

(11) (a ‘R m) cg¥=b-pm
Multiplying both sides of (i) by m, we get

(a.Rx) egM=Dbe-m

R
which we can rearrange by the commutative and associative laws

~Lor ‘R to give us

(111) (a-Rm)-Rx=b-Rm 4
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Now compare (1i) and (1ii). Recall that the y in (11)

beo m
was unique. Thus in (111) x must also be 3—.2—3
p P-g"™ |
Hence — = ——— , and the proof is complete.
a a-gm

___ Question: Can we have numbers a,b,c,d in R with a #0,

¢ # 0 such that
2F%?

We're asking here if there exist fractions in R that are

not the same. for perhaps all fractions in R are the same.

This is not so and we show this by example. Since R 1is

an extension of J, we know all our old numbers (the integers)

pust be in R. Using this fact together with the fact thai;

2 ¥ 3, we show that % # 2.

Notice that %= 2 because % is the unique x such that

l-x =2, Butweknow 12 =2, Hence 2 =2. Also 4 =3

since % is the unique y such that 1-y = 3. But we

know 13 = 3. Thus

=\N

= 3. Since 2 # 3, we lcnow—-§;lq?[

by the logic of equality. So we see there are in fact different
fractions. More generally, we have the
Theorem: If a #0, b#d, then 2£3

Proof: We leave the proof as an instructive exercise.

Combining the above two theorems on fractions, we get

the following criteriocn for fractions:

b_d i
2a°-3 if b-Rc—a-Rd
and

b d . .
—a'f—c' if bRc;la Rd
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We began our axiomatic approach to the rationrnal number

sy3tem by assuming

(1) (R,+R,-R) is 2 number system, an extension of (J,+,°)

- (11) Certain laws hcld for (R,+p,*p)

(111) Por any numbers a,b in R, if a # O then there

is some x in R such that a_o X = b,

R
We proved last time the fbllowing theorems:

1. Given a,b in R with a # 0, there is exactly one

x in Ii sSatisfying a -R:&=b,
This theorem was the basis for defining T:‘ to be the
unique number x determined by a and b.

2. If a,b are any numbers in R with a # 0, then

b.Rm

b _
a n

3 for every number m in R that is not zero.
‘R

Another theorem (which we did not prove) gave conditions
when fractions were nct equal.

3. If a#0 aad bj#c, then —2-;4-:-;-.

Try to prove this--go back to the definitions of —:—

c
a --.
and =

t Problem: G&lven two fractions

wlo

and

alo

with a #0, d#O0,

o

how can we decide whether or not = %?

Solution: Using Theorem 2, we try to find suitable numbers

. ( b _f c_£g
2 - TR e =
g £,& and e (with =2 5 0) such that e and 3§ =3.
Having done this we know that if f = g thenr by logic —:— = %

plo

=

and hence

ol

, and if f #g, then £ #E vy Theorem 3;
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hence g # -g— Notice that the crux of this is finding suitable

numbers f,g and e 1in order to express ; as -% and %
g
as - |
We give twe ways for doing this.
be_ d
- b R
4} 2y e = RN 4 .
(1) Pirst way. -We know 2 -5_‘—}1-? by -Theorem 3 and the
. ¢ C .R a
fact that d # 0. Similarly = = . Thus, since
. 7 d d -R a
aspd=d-pa by the commutative law for <p (which

we're assuming), we can now complete the comparison.

In more familiar language what we've done is find a
common denominator for both fractions, whereupon we can
compare the numerators,

(11) Second way. Similar to (i) except that the number e

is chosen as the least common multiple of a and d.

We'll now 1llustrate both of these ways with a numerical

example. : ' ~
Question: 1Is % the same as %?
by method (1): %=35,—°.—§=%3-

Now since 42 # 40 we know that % # % .
by method (11): What is the 1l.c.m.(6,8)? Easy to see

that it is 24, by multiplying 6 successively by
natural numbers until we reach a number that is a

|
E( ) multiple of 8.
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Hence, %:%—:—2=%& and
{ _1°3_21
B " 8-35"724 -

Since 21 # 20, we know that %;!% .

We'll now try to make some contact with our textbook. .. _ _

Iet's take a fraction, say -g; by definition this is the

unique x such that 6 ‘R X = -8. We also know from
Theorem 2 that:
-8 »16 =24 =32
5 = ——8 —SE = ...
8 16 2y

=6-TI2-TI8"~ --

Our textbook considers these fracticns as members of a set

i i I I

By our definition of fréctions the number of elements in the
above set 1s 1, since by our criterion all the elements ?re
equal. However, the tiext gives the notation -3 a different
meaning--in the text -2 denotes the ordered pair (b,a);
hence, by the text's definition the above set has an infinite
number of elements. The book is taking a definitional zpproach

to the rational numbers and has defined

((-8,6),(-16,12),(-24,18), ..., (8,-6), (16,-12), (24,-18) } = =2

We, however, are proceeding axiomatically. Later on we shall

actually construct the rational numbers.

r. -
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Problem: Given rational numbers 12 and '% where a,c # O,

b d
can we express 2 +R'E as some new fraction

numbers f,e (e # 0)?

for suitable

LYY

The answer, of course, is yes, and we®'ll show how we

can derive the answer within our axiomatic framework.

|

First, we'll consider the siﬁﬁie case where ;_ aﬁa c

are equal. Thus, we wish to find «2 +R-g.

Recall that: is defined as the unique number x in R

such that a .; x=b, and

pla o welo

is defined as the unique number y in R
such that a ‘RY = d.

By the logic of equality, we can add these equations getting:
(a ‘R x) +p (a " R y) =b +g d.

Using the distributive law for R, this can be transformed to

a-R(x+Ry)=b+Rd

Hence, by Theorem 1 of today's lecture,
X +p ¥ is the unique number of R which when multiplied
by a gives (b +p d). But by our definition of fraction

b+, 4
this unique number is -—33—— . Thus, x +R y- is the same
b+, d b+, d
R = R _ b
as —— that is, x +R y=—3 . Since 3 = X
and 'g = y Wwe have thus shown that
a Ra a *

"PThis last underlined equation tells us that to add two frac-

tions with the same denominator, add their numerators.
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We first reiterate the criterion discussed at the last

lecture.

Given 2, %— with a,c # 0, to determine whether or notv

— e these are the same rational number find sultable numbers

e,f,g so that

N

b f ' da_g
a~e amd <=7

That is, express both fractions with a common denominator.

b_d - bd
Then S =2 if f=g and - £ 1f f #£g.

Methods for finding e,f,g:

(1) Take e=a-pc. Then f =1 p ¢ and g=a -5 4

(11) Take e = l.c.m.(a,c); then find appropriate f,g.

"x For some obscure reason this is the method customarily
used in elementary schools.

In actuality, we can take the new deminator e to be
any common multiple of the denominators a and ¢ and

then find suitable numbers f and g.

You should have in mind the fact that all our work with
fractions has depended on our definition of 'g as the unique

number x of R such that a ., x = b. In addition, the

R
proof of the above criterion depended on the following two
theorems: _
1) Given la’-, a # 0 and glven any number m ¥ O, then
} b b ‘g @ T
ry =-5—TE—E . We proved this in detail.
e

ERIC
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2) Given and

® |0

f 4 &
ry , e#0, if £ #£g then g #32.

The proof of this theorem was left as an exercise.

Important Remark: 1In elementary school a theorem such as

Theorem 1) atove would not be proven. Nevertheless some

—

—intuitive evidence for its truth can and should be presented. --

One way would be to use a number line: . _ i .
N T | f | ]

ces 2 1 ¢ 1 2...

Suppose we're given -79 and we want to illustrate that

8 _"8°2 ,. 8_I16
T - ?.20 e S o -T' —ﬁ.
18t: Find that distance which if layed off seven times .

beginning at the zero point wculd take us.to the point
marked 1. Lay this distance off in both directions

elght times. Thus we have: 8/7 | 3/7

1 0 1

There 1s a way to now see without laying off any new

distances that —%% =-7§ by taking midpoints of the intervals

of -% distance. Then w2''1 nave a total of 14 equal
intervals between 0 and 1 and 16 of these .intervals on
the negative side of the number line takes us to the point

already marked <—$ .

-

Thus, the arithmetical process of multiplying the numera-

: tor and denominator by 2 corresponds to the geometric concept

of taking micépoints. This process of dividing the scale into

J P




Lecture 24, May 29, 1968, 3

. finef intervalis 1s cimply a process of using different trsic
units. WNote ‘hat aoy quantity may be 2xpressed in a variety
of units; ¢or examplie, 440 ,ards is the same as -% mile.

In other werds mulftiviyiag by a numder simply corresponds to

a chance of scaisz.

Previouslr, we di.cuized the

Theorem: Give: o,T,c¢ with 1 £ 0, then ,
b+ ¢ ' -7
.p. +‘ E : — 1.1-
a R a g

d
- To 1llustrate this *“rocren fur the elerzntary schools, we
use a slide rule similar Lo Lhe onc vie previously used to

add integers iike 1 and 2.

el Tepis WS Sptioy Seivord oot o Sliding scale
—rm—em e s pam —a o wme b e n e o e e = f1Xed scale
see 2 » 6 1 2 3 ..
To find the sum of fractions like L 1 == , we follow the
5 b5

same basic vw_;- as nxzfrre except we use a change of units,

dividing “he oacic unit of %hae fixec and sliding scales
9 -,
in’> fifthas. Tass +o 7ind % + -2 w2 place the O of the

8liding scazle over ih2 - noint on th2 fixed scale and read

the answer cn tha {fix:. seele ub the point corresponding to

‘ -§ on the sliding £0io. Thus Ly —g _ ...% ,
i “ 50
I s L e St - sliding scale
-u G .-p . )
4...4._{,_. il :3.:..‘ e teme e e e fixed scale
It T S 2

- 5 5 55 5
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To find the sum »f fractions with denominators other than

5, the basic unit of the scale would naturally have to be

divided differently. One way to do this would be to use strips

"6f~é1éar—plastic that would attach to the scales of the slide

strips might not be part of the regular classroom equipment,
and so it would be up to the indiviaual teacher to impress
upon the sch061 district her need.

Now, to'add two fractions with different denominators,

first convert them to fractions with the same denominator.

Example: To add -2 and '% where a,q # O.

stnce 2o 2% 4o _2°RC d since

nce - =g — an 3= 3 R 3’ an

we know .gm;ﬁ_g +p : :R ° = (b R i +R (2 ‘R cz ,

Rq Rq a.Rq

b e (brpa)+g(a-pec)
Thus 3+RE_ ae a
Rather than memorize this equation, one can very easily remem-
b+, ¢

ber that -2 +R'§ =-—~E?~— s Ueing first the method for con-

verting two fractions to fractions with a common denominator.

Recall that we mentioned an application of fractions to

the Theory of Probability: There are many simple experiments

possible for elementary school children which illustrate

various laws of probability. For example, there is the lhw

-.for the proRability of the union of two exclusive events:

(;J Suppose the probability of event E 1is a certain rational

_____rule and could be marked on and erased quite easily. These
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number ~§ and the probability of another event F 1is ‘%.
Furthermore, suppose that events E and F are exclusive
(which means they cannot both happen simultaneously). Then

the probability that either event _E or event F will occur

is ‘2 +-%. This law may be illustrated as follows: We

toss a fair die and designate event E to be: die turns up

with upper face showing snake eye (one dot). Since this is

~a fair die, Probability (E) =~%. We designate zgevent F:

die turns up with an eveir number of dots on top. Since a

die has six sides, three of which have an even number of dots

and three of which have an odd number, Probability (F) =-%.

Since events E and F are mutually exclusive (why?)

1 1 (1° 2) + (l' 6)
Probabilit either E or F) = 4+ = = T
) : Y( ) -6 2 6'2

2+ 6
12
_ 8
or using the 1l.c.m.(6,2) we'd get

l .1 _1+3 4
8tz2="%" =% -

ERIC
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In our axiomatic approach to the rational numbers wetve
assumed (R,+R,-R) to be a number system, an extension of
(J,+,°), satisfying certain laws and such that for any

"a,b 1in R 1if a # O then there exists 2 € R with

a-p (3) =0

For the operation +R we obtained the following formulae:

b+. ¢C
b I
71) -a-+R-é-— 2 and
b..m
b " R i
11) if m # 0 then 2~ T,

Using these two equations we derived a formula for the sum

of fractions of unequal denominator:

bopa)+p (c-pa)
b c _ ( R R R
If a,q i‘é 0 then r + -a = 3 R q

Problem for the opzration "R
Glven -§,~% (a,a # 0), can we express the product

5., P . i
a Rq in the form S for suitable numbers. f. and e
(e #£ 0)? )

Of couwurse, we can. The rule we all learned many

years ago 1s to take f = D "gr P and take e = a ‘r -

However, we are not interested in simply presenting a.formula
for multiplication in R. Of more interest is showing hcw
the formula is obtained. This is done in mathematics by a

E‘ Proof: by definition of the fractional notation, = 1s

fthe unique number x of R such that
<]
a

(. 1) a ‘g ¥ =Db and is the unique number y of R
7

{

Aruitoxt provided by Eic:
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such that
11) q g ¥ =p.
From 1) and 1i) by the logic of equality we get
111) (a-5x) cp(a g ¥y) =b-pp
4By-severél.applicationswofAtheucommutative_and.associative

laws for - which are among our axioms (assumptions),

111) becomes
(a-pa) gxepgy)=Db-pp
Using the last equation and what we have been calling

Theorem 1, we get that

X epJ is the unigue element of R

which when rultiplied by (a ‘R q) gives b ‘g P- But by
definition of the fractional notation, this unique element

b.Rp b'Rp
Ef?;;7i . Thus we have shown that x R y =';ﬁjg‘a .

Sirice x =

»lo

and y =V% we can conclude that ‘2 . '% -

by the legic of equality.

[ [ —

is

‘Rp

.Rq

intuitiv

Some applications of multiplication which contribute to an

understanding of it. .

1. Geometry -- the computation of area.
We have all learned that:

area of a rectangle = (length) + (width).

What does this mean?

Given a unit length u, |———|, this determines a
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unit area by forming a square all sides of which have
u

u lu

u

the unit u as length:

__If we have a rectangle and we find rhe unit length .. .

u can be laid off three times on one side and two times
for the other side, then déing the above formula for

area we find that

Area = (3 + 2) square units

u ' = 6 square units

u u
However, how do we know that if this rectangl is divided
up some other way than tne above way we’ll get the same
result for its area? Perhaps starting as we do below
and pasting bits and pieces of the unit area here and
there on the giv:n rectangle we would come out with 7
square units as the area. ‘

It. turns out that 6 square units is

indeea the area of this rectangle.

u
e u | We come to helieve this by experience,
|

{(”/\P h trial
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unwilling to rely on physical methods and have tried and‘
succeeded in proving this within a suitable framework

of axioms, but the prooir is highly complicated. The

. —- - - -- -— theorem which they have proven says that it is impossible

to cut up a three by two rectangle using a finite num.2r

of cuts and paste it together to form a figure with
anything other than six urifs for area. However, if you
ére allowed to cut it up into an infinite number of
pieces then it is possible. This is called the Banach-
Tarski paradox and shows that the notion of area 1s a
deép concept.

Now supposa we have a rectangle one side of which

has length -%u and the other side has length ‘%u.
The rectangle looks like this: -%u
1
| 28

Applying our formula for area,

1
>

1

=5 square units.

area of this rectangle = (% ‘R ) square units

A way to make this result intuitively convincing for

elementary school children would be to look at what we
- == mean by saying the rectangle has a side of length one-

half unit. We mean that if we lay that side off twice

we get a whole unit of length. Similarly for the length
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'of the other side except we lay it off three times.
Thus, if we complete the unit square from these two

sides ﬁe get the following figure:

2l |

Ju (¢ _ |
=

i .
1lu

Visually ene can now see that the unit square 1s divided
into six identical pieces. Thus the original rectangleé

has as area -% square units.

Another application for mﬁltiplication especially appro-
priate when dealing with fractions is

2. Probability Theory, and more specifically the computation

of the probability of simultane)us occurrences of inde-
pendent events. _
Suppose our "equipment" consists of one fair coin
and one fair die.
Leﬁ E Dbe the event: die is rolled and comes to rest
with 5 dots on its top face.
Let F be the event: coin is rolled and comes to rest
with head on top.
Clearly Probability (E) = and Probability (F) = 3

ERIC
_ ERIS Question: What is the probability of the event that when
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3 dots on top and the coin will rest with the head on
top?

According to the theory of probability, as long as
the outcome of the coin rolling does not influence the

outcome of the die and vice-versa (This is what is meant

. by independence of the event ", then
Probability (E and F) = 3 ‘3 = is

As with area, there are deep questions connected with the
theory of Probability. To say that the Probability of the |
event E above is -% does not mean that rolling a die 60
times will result in E occurring exactly 10 times. It means
that in a vast number of experiments each experiment consist-
ing of rolling the die once, the proportion of times that
three dots appear on top would "tend to" -%. This concept

of "tends to", however, rests on the notion of limit, a notion

studied in that branch of matl=matics called analysis.

| o | S
E,___-____-___,____» - _
|
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Final exam: Friday, June 7, 9-12 220 Hearst Gym.

At our last lecture we introduced multiplication of

rational numbers and derived the classical school rule:

-~ b, a_bpd
a Rc¢c a -Rc !

additionally, we discussed applications to ared and Probability
Theory.

+ % as a rational number of

plo

Question: How can we obta’n
the form -g?
In elementary school the answer that's usually given is

a mysterious "Invert and Multiply", meaning

b _ d
D 2 '3 is the same as
% 03% which is equal to, by our rule for
multiplying fractions,
b .R ¢ | ' )
a .R a
Qur purpcose here, however, 1s to understand wherc such

cryptic rules come from -- that i1s, how can it be derived

within our axiomatic framework?

First, let's examine what we mean by the notation -2 + % .
Definition: We define 2+3 to be the unique z of R
such that 2 -R% = 2.

Since 2z ‘Re ™ % "R 2 by the commutative law f.or R
(one of our axioms), we have that la)' + < 1s the unique z

ERIC
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"R Z ='§. Now from this last equation

cla

"of R such that

using our definition of the fractional notation, we get that

b b _d_ b
this unlque 2z 1is ik Hence 2f¢c= 3 -
| d
c c
Iet us now try to find numbers x and y so that
we can express 2z as '$ -- that is, we're seeking numbers
b
x and y so that ~% 'R'§ =3- cy our rule for multiplying
. . d .R X b
fractions this means finding x and y so that T o.y-3"
‘R

Look carefully at this last equatio.i.. Notice that 1f we

could find numbers x and y so that

d. b and C'Ry=a’

Rx

B we would then be finished. In the realm of integers, however

Wwe know there may not be such numbers x and y. However,
if we could change 'g to a new fractlion whose numerator is
a multiple of d and whose denominator is a multiple of e,
then we could solve for x and y in the integers. We

can do this by a previous theorem, since
b PR (a g ©)

a a.R(d.Rc)

Thus, we are now seeking numbers x and y so that

d.gx _brpld.-gc)
C.p V¥ a.RF-Rc)

..._Using the commutative and associative laws for -g» We see

that we can choose x=b e, c and y=a -

) R d . Thus the-

R

©

ERIC
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be.,c
number 2z we are looking for is =z ='3__E_E » and hence
.R‘
we have shown that
b L 2
b,da_a _"'rR°_b, o
a' ¢ d "a.pd a Rd-
c

"

1.e./—we have derived the rule for ‘dividing one fraction by —

another fracticn.

~

This brings to a conclusion our axiomatic approach to the

Rational number system. This system can also be reached

from the Integers using a definitional approach, whereby

we would like to define a set R together with operations

o + .
+R and R S° that:
1) the system (R,+R,°R) is an extension of (J,+,°)

11) The basic laws hold for the new system jJust as they
do for the old, and finally the distinguishing
property of the new system

111) Given any a,b in R, if a # 0 then there is

some x 1in R such that a ‘R X=Db

Actually 1t is possible to accomplish this in a variety
of ways, all cf which, haever, are motivated by first looking
at the axiomatic approach.
Our textbook approach, which is tpe mes t common defini-
tional approach, is to define the elements of R as sets of
the form (...(-10,-14),(-5,-7),(5,7),10,14),(15,21), ...}
or in general {(a,b),(m-a,m+ b)) where m = 1,2,3,...,-1,-2,..

Full Tt Provided by ERIC.

ERIC (L.e. m can be any ireger excert 0O) and a and b have




Lecture 26, June 3, 1968, 4

no common factor other than 1 and ~1 and b > O.

Now to define +p and ".R

Given any two such elements of R, say ((msa,ms b))}

and {(m-c,m-d)} we define -g ‘to be the operation such

~ that ((m:a,m-b)} -p ((m-c,m-d)} = ((m-x,m« y)}, where
x 1s obtained from a-c and .y is obtained from b.d
by division by the g.c.d.(a - c,b-rd). By looking carefully
'at our-axiomatic approach we analogously define +B .
These above definitions do not exactly give us an exten-
sion of (J,+,-) since our old numbers do not actually appear
in thls new system. However if we replace those elements
;} of R of the form {(m-.a,m-b)} by the element a of J,

we would then have an extension which agrees with what we

defined an extension to be.

ERIC )
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